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In recent years, the out-of-time-order correlator (OTOC) has emerged as a diagnostic tool for
information scrambling in quantum many-body systems. Here, we present exact analytical results for
the OTOC for a typical pair of random local operators supported over two regions of a bipartition. Quite
remarkably, we show that this “bipartite OTOC” is equal to the operator entanglement of the evolution, and
we determine its interplay with entangling power. Furthermore, we compute long-time averages of the
OTOC and reveal their connection with eigenstate entanglement. For Hamiltonian systems, we uncover a
hierarchy of constraints over the structure of the spectrum and elucidate how this affects the equilibration
value of the OTOC. Finally, we provide operational significance to this bipartite OTOC by unraveling
intimate connections with average entropy production and scrambling of information at the level of
quantum channels.
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Introduction.—A characteristic feature of certain
quantum many-body systems is their ability to quickly
spread “localized” information over subsystems, thereby
making it inaccessible to local observables. Although
unitary evolution retains all information, this local inac-
cessibility manifests itself as equilibration in closed sys-
tems and has been termed “information scrambling” [1–5].
For Hamiltonian quantum dynamics, scrambling can be

probed by examining the overlap of a time-evolved local
operator VðtÞ ≔ U†

t VUt with a second static operator W.
This overlap is commonly quantified via the strength of the
commutator

CV;WðtÞ ≔
1

2
Tr(½VðtÞ;W�†½VðtÞ;W�ρβ); ð1Þ

where ρβ denotes the thermal state at inverse temperature β
(in fact, CV;WðtÞ ¼ 1

2
k½VðtÞ;W�k2 for the norm associated

with the inner product hX; Yiβ ¼ TrðX†YρβÞ, β < ∞).
From the perspective of information spreading, CV;WðtÞ
is a natural quantity to consider, since it constitutes a state-
dependent variant of the Lieb-Robinson scheme; the latter
enforces a fundamental restriction on the speed of corre-
lations spreading in nonrelativistic quantum systems [6–9].
In Eq. (1), it is convenient to consider pairs of operators V,
W which at t ¼ 0 act nontrivially on different subsystems
and, thus, commute; we follow this convention here.
The commutator CV;WðtÞ is intimately linked to the out-

of-time-order correlator (OTOC) [10,11] which is a four-
point function with an unconventional time ordering

FV;WðtÞ ≔ Tr½V†ðtÞW†VðtÞWρβ�: ð2Þ

The connection between the two arises when V, W
are unitary; Eq. (1) then immediately reduces to
CV;WðtÞ ¼ 1 − Re½FV;WðtÞ�. In this Letter, we focus on
the infinite-temperature, β ¼ 0 case.
Through the years, several key signatures of quantum

chaos [12–15] have been introduced. The initial exponen-
tial growth of the OTOC was proposed as a diagnostic of
quantum chaos [16–23]. However, a careful analysis has
revealed that information scrambling does not always
necessitate chaos [24–29].
Per se, the OTOC’s ability to probe dynamical features

clearly depends on the choice of operators V, W. However,
it is desirable to be able to capture these features as
independently as possible from the specific choice of
operators. This insensitivity can be achieved by averaging
over a set of operators, a strategy also considered in
Refs. [22,30–35]. It is crucial to remark that, for the
averaged OTOC to faithfully capture information spread-
ing, the averaging process must preserve the initial locality
of the system, i.e., which subsystems V,W initially act upon
—an observation that was quintessential in revealing the
correct behavior of the OTOC and its connection with
Loschmidt echo [35].
Given a bipartition of a finite-dimensional Hilbert space

H ¼ HA ⊗ HB ≅ CdA ⊗ CdB , we will henceforth focus on
averaging CVA;WB

ðtÞ over the (independent) unitary oper-
ators VA and WB, whose support is over subsystems A and
B, respectively. The resulting quantity
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GðtÞ ≔ 1 −
1

d
Re

Z
dVdWTr½V†

AðtÞW†
BVAðtÞWB� ð3Þ

depends only on the dynamics and the Hilbert space cut,
where we denote VA ¼ V ⊗ IB andWB ¼ IA ⊗ W and the
averaging is performed according to the Haar measure [36].
We will refer toGðtÞ for brevity as the bipartite OTOC, and
analyzing its properties will be the focus of the present
Letter.
It was recently shown in Ref. [35], where GðtÞ was first

introduced, under the assumptions of (i) weak coupling
between A and B and (ii) Markovianity, that GðtÞ exhibits a
close connection with the Loschmidt echo [37,38]; the
latter has been widely employed to characterize chaos
[39,40]. Here, we first show, without any of the previous
assumptions, that GðtÞ is, in fact, amenable to exact
analytical treatment, and we uncover its direct relation
with entropy production, information spreading, and entan-
glement. We also rigorously prove that the average case is
also the typical one, hence justifying the averaging process.
Our main results are stated in the theorems that follow. All
proofs of the claims appearing in the text can be found in
Supplemental Material [41].
The bipartite OTOC.—We begin by bringing GðtÞ in a

more explicit form which will be the starting point for a
sequence of results. This can be achieved by working on the
doubled space H ⊗ H0, where H0 ¼ HA0 ⊗ HB0 is a
replica of the original Hilbert space.
Theorem 1: Let SAA0 be the operator over H ⊗ H0 that

swaps A with its replica A0 and d ¼ dimðHÞ. Then

GðtÞ ¼ 1 −
1

d2
TrðSAA0U⊗2

t SAA0U†⊗2
t Þ: ð4Þ

The analogous expression for BB0 also holds.
The above formula immediately exposes a connection

between the bipartite OTOC and the operator entanglement
of the evolution EopðUtÞ, as defined in Ref. [47] (see also
[41] for the relevant definitions). The two quantities,
remarkably, coincide exactly. This observation also allows
one to express the entangling power [48] ePðUtÞ as a
function of the bipartite OTOC for the symmetric case
dA ¼ dB. The former quantifies the average entanglement
produced by the evolution and has been established as an
indicator of global chaos in few-body systems [49–52].
Theorem 2: Let GU denote the bipartite OTOC for the

evolution U. Then, (i) EopðUtÞ ¼ GUt
, and (ii) for a

symmetric bipartition dA ¼ dB,

ePðUtÞ ¼
d

ð ffiffiffi
d

p þ 1Þ2 ðGUt
þ GUtSAB −GSABÞ: ð5Þ

For the finite-temperature case, Eq. (4) admits a straight-
forward generalization which we report in Ref. [41].
However, a direct connection with operator entanglement
and entangling power may not be so simple.

How informative is the average GðtÞ?—Usually, one is
interested in behavior of the OTOC for a typical choice of
random unitary operators. Because of measure concentra-
tion [53], we prove that the two essentially coincide; i.e.,
the probability that a random instance deviates significantly
from the mean is exponentially suppressed as the dimen-
sion of either of the subsystems A and B grows large.
Proposition 3: Let PðϵÞ be the probability that a

random instance of CVA;WB
ðtÞ deviates from its Haar

average GðtÞ more than ϵ. Then,

PðϵÞ ≤ 2 exp

�
−
ϵ2dmax

64

�
; ð6Þ

where dmax ¼ maxfdA; dBg.
In the definition of the bipartite OTOC and to obtain the

replica formula Eq. (4), we have so far considered averag-
ing over the uniform (Haar) ensemble which continuously
extends over the whole unitary group. Although natural
from a mathematical viewpoint, this choice can turn out to
be rather complicated on physical and numerical grounds
[54]. Nonetheless, we show in Ref. [41] that Haar averag-
ing can be replaced by any unitary ensemble that forms a 1-
design [55–58] without altering GðtÞ. Such ensembles
mimic the Haar randomness only up to the first moment,
which is the depth of randomness that the OTOC can probe
[22]. The latter assumption is thus much weaker than Haar
randomness. For instance, consider the case of a spin-1=2
many-body system split into two parts, A and B. Instead of
averaging over Haar random unitaries VA and WB, that
typically do not factor, the 1-design (equivalent) picture
prescribes to instead consider only fully factorized unitaries
with support over A and B, e.g., products of local Pauli
matrices.
Time averaging the bipartite OTOC.—In finite-

dimensional quantum systems, nontrivial quantum
expectation values or quantities such as CV;WðtÞ do not
converge to a limit for t → ∞. Instead, after a long
time they typically oscillate around an equilibrium value
[59–64] which can be extracted by time averaging
XðtÞ ≔ limT→∞ð1=TÞ

R
T
0 dtXðtÞ. We now turn to examine

this long-time behavior GðtÞ of the bipartite OTOC as a
function of the Hamiltonian and the Hilbert space cut.
Let us begin with the case of a chaotic dynamics, which

entails level repulsion statistics [15] and an “incommen-
surable” relation among the energy levels. As such, chaotic
Hamiltonians satisfy (either exactly or to very good
approximation) the no-resonance condition (NRC): The
energy levels and energy gaps feature nondegeneracy. This
has important implications for the long-time behavior of
their bipartite OTOC, as we will see soon.
Let us spectrally decompose H ¼ P

k Ekjϕkihϕkj and
use ρðχÞk ≔ Trχ̄ðjϕkihϕkjÞ to denote the reduced density
operator over χ ¼ A, B corresponding to the kth
Hamiltonian eigenstate (χ̄ corresponds to the complement).
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Below, hX; Yi ≔ TrðX†YÞ denotes the Hilbert-Schmidt
inner product [65], which gives rise to the operator 2-norm
kXk2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffihX;Xip
.

Proposition 4: Consider a Hamiltonian satisfying the
NRC. Then

GðtÞNRC ¼ 1 −
1

d2
X

χ∈fA;Bg

�
kRðχÞk22 −

1

2
kRðχÞ

D k22
�
; ð7Þ

where RðχÞ is the Gram matrix of the reduced Hamiltonian
eigenstates fρðχÞk gdk¼1, i.e.,

RðχÞ
kl ≔ hρðχÞk ; ρðχÞl i; ð8Þ

while ðRðχÞ
D Þkl ≔ RðχÞ

kl δkl.
Let us first point out some basic, yet important properties

of the above formula. The matrix RðχÞ is real and

symmetric, while RðχÞ
D is positive semidefinite and

diagonal. Moreover, the completeness of the Hamiltonian

eigenvectors imposes
P

k ρ
ðχÞ
k ¼ dχ̄I; thus, the rescaled

R̃ðχÞ ≔ RðχÞ=dχ̄ are doubly stochastic, i.e.,
P

i R̃
ðχÞ
ij ¼P

i R̃
ðχÞ
ji ¼ 1∀ j. As R̃ðχÞ is a (rescaled) Gram matrix, its

eigenvalues are non-negative and upper bounded by 1,
and at most d2χ of them are nonzero [65]. This last
property follows from the fact that Rank R̃ðχÞ ¼
dimSpanfρðχÞk gk ≤ d2χ . Observe also that kRðAÞ

D k22 ¼
kRðBÞ

D k22 as two states ρðAÞk and ρðBÞk always have the same
spectrum (up to irrelevant zeroes).
Bipartite OTOC and entanglement.—Proposition 4

makes it possible to bridge the long-time behavior of the
bipartite OTOC with the entanglement structure of the
Hamiltonian eigenstates. Let us begin with the symmetric
case where dA ¼ dB and all jϕki are maximally entangled
with respect to the A-B Hilbert space cut. This limit
uniquely determines the time average for the NRC case,
regardless of the exact Hamiltonian eigenbasis. In general,
however, knowledge of the entanglement is not enough to
uniquely determine the equilibration value; the inner

products RðχÞ
kl go beyond probing just the spectrum of

the reduced states. A simple substitution in Eq. (7) gives for
the maximally entangled case GMEðtÞNRC ¼ ð1 − 1=dÞ2.
We will later show the upper bound GðtÞ ≤ 1 − 1=d2min;
therefore, the equilibrium value for the bipartite OTOC in
this case is nearly maximal, as expected for highly
entangled models (e.g., Refs. [66,67]).
How robust is this conclusion for chaotic Hamiltonians

with a possibly asymmetric bipartition? Typical eigenstates
of chaotic Hamiltonians, as also predicted by the eigenstate
thermalization hypothesis [68–70], are believed to obey a
volume law for the entanglement entropy. Moreover, their
entanglement properties in the bulk resemble those of Haar
random pure states [71–73]. We will now show that high

entanglement for the Hamiltonian eigenstates necessarily
implies that the deviation of the actual equilibration value
from GMEðtÞNRC is small.
It is convenient for this purpose to quantify the amount

of entanglement via the linear entropy [74,75] of the
reduced state EðjψABiÞ ≔ SlinðTrχ jψABihψABjÞ, where
SlinðρÞ ≔ 1 − Trðρ2Þ. The latter will also emerge naturally
later when we express the bipartite OTOC in terms of
entropy production. Notice that E ≤ 1 − 1=dmax ≔ Emax,
which is achievable only for dA ¼ dB.
Proposition 5: If Emax − EðjϕkiÞ ≤ ϵ holds for at least a

fraction α of the Hamiltonian eigenstates, then
jGMEðtÞNRC −GðtÞNRCj ≤ αJ þ ð1 − αÞK, where

J ≔
6ϵ

dmin
þ 5ϵ2

2
þ 2

λ2 − 1

d2max
; ð9aÞ

K ≔
�
1þ 2

dmin

�
ð1 − αÞ þ 2

d
þ 4ðϵþ ffiffiffi

ϵ
p Þ; ð9bÞ

and λ ¼ dmax=dmin.
The above bound provides a sufficient condition such

that the bipartite OTOC equilibrates around GMEðtÞNRC. It
is expressed in terms of the fraction α of the highly
entangled eigenstates, their entanglement, and the
asymmetry of the A-B bipartition. Notice that the
bound simplifies considerably for the case α ¼ 1 and
dmin ¼ dmax ¼

ffiffiffi
d

p
, that is, jGMEðtÞNRC − GðtÞNRCj ≤

ϵð6= ffiffiffi
d

p þ 5ϵ=2Þ, which should hold to a good approxi-
mation for Hamiltonians with high entanglement in the
bulk of the energies. Applied to chaotic Hamiltonians, the
bound of Proposition 5 indicates that the bipartite OTOC
will equilibrate near GMEðtÞNRC, with deviations up to
Oð1=d2minÞ. Here, chaoticity concretely means that the
Hamiltonian spectrum satisfies the NRC and that the
entanglement of the typical eigenvectors in the bulk, which
determine the equilibration value, resembles that of Haar
random vectors [76,77]; i.e., Trðρ2χÞ ≈ ðdA þ dBÞ=ðdþ 1Þ
and, thus, ϵ ¼ Oð1=dminÞ and α ≈ 1. For a fixed ratio λ and
as d grows, GðtÞNRC hence converges to GMEðtÞNRC for all
chaotic systems. Since GðtÞ ≤ 1 − 1=d2min, fluctuations
around the time average are necessarily insignificant,
justifying the term equilibration.
Beyond chaotic Hamiltonians.—We now relax the

“strong” level repulsion, i.e., NRC, criterion and uncover
how a hierarchy of constraints, each implying a different
strength of chaos, is reflected in the equilibration value of
the bipartite OTOC.
Integrable models, which possess a structured spectrum,

are expected to violate the NRC. Nevertheless, notice that
Eq. (7), although derived under the NRC, can still be
evaluated for an (arbitrary) choice of orthonormal eigen-
vectors of the Hamiltonian. We will refer to the resulting
value as the NRC estimate of the time average, and we will
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shortly show that this estimate always constitutes an upper
bound of the actual equilibration value (and coincides with
it for chaotic Hamiltonians). This is of both conceptual and
practical importance, as evaluating the NRC estimate is
considerably less intensive than calculating the exact value.
In fact, one can make a broader claim. For that, we first

sketch three types of averaging processes over G, increas-
ingly shifting away from the strong chaoticity limit. Each of
them gives rise to a corresponding estimate for the (exact)
equilibration time-average value GðtÞ. (i) ḠHaar: Averaging
over (global) Haar random unitary operators U ∈ UðdÞ in
place of the time evolution. This averaging process is
“beyond chaos,” in the sense that it does not conserve
energy, in contrast with time averaging over any
Hamiltonian evolutions. Its estimate (only a function of
the dimension) is given later in Eq. (10). (ii) GðtÞNRC: Time
average, assuming the Hamiltonian has nondegenerate
energy levels and nondegenerate energy gaps. The corre-
sponding estimate is Eq. (7). (iii) GðtÞNRCþ

: As before, but
assuming the Hamiltonian may have a degenerate spec-
trum, but the energy gaps (between the different levels) are
nondegenerate. Its estimate depends only on the eigenpro-
jectors of the Hamiltonian and can be found in Ref. [41].
The value of the Haar average can be performed exactly,

with the result

ḠHaar ¼ ðd2A − 1Þðd2B − 1Þ
d2 − 1

: ð10Þ

The following ordering holds.
Theorem 6: For any given Hamiltonian, the corre-

sponding estimates are related with the exact time average
GðtÞ as

ḠHaar ≥ GðtÞNRC ≥ GðtÞNRCþ
≥ GðtÞ: ð11Þ

The above constitutes a proof that coincidences in the
spectrum of a Hamiltonian up to the “gaps of gaps” (i.e.,
degeneracy over the energy levels and their gaps) always
reduce the equilibration value of the bipartite OTOC.
Let us now numerically compare each of the estimates

for two models of spin-1=2 chains with open-boundary
conditions: (i) transverse-field Ising model (TFIM)
with nearest-neighbor interaction, HI ¼ −

P
iðσziσziþ1 þ

gσxi þ hσzi Þ and (ii) nearest-neighbor XXZ interaction
HXXZ ¼ −J

P
iðσxi σxiþ1 þ σyi σ

y
iþ1 þ Δσziσ

z
iþ1Þ. Recall that

HI for h ¼ 0 is integrable in terms of free fermions, while
HXXZ by Bethe ansatz techniques. The two types of
solutions yield qualitatively different spectra; free fermion
solutions necessarily violate nondegeneracy of the gaps.
This is reflected in the accuracy of the estimates (see
Fig. 1). Although the NRC estimate provides essentially
the exact equilibration values for the chaotic phase of the
TFIM, it overestimates them in the integrable phase. On the
other hand, NRCþ is essentially exact for the integrable
case of the HXXZ due to the lack of coincidences in the
gaps. The results obtained here corroborate existing studies
in the literature, where the (short- and) long-time behavior
of the OTOC was studied for various many-body systems;
see Refs. [78–80].
Bipartite OTOC and subsystem evolution.—We have so

far focused on examining the behavior of the bipartite
OTOC from the perspective of closed systems, i.e., over the
full bipartite Hilbert space HA ⊗ HB. One can instead
express GðtÞ as a function of the reduced time dynamics
over only either HA or HB (and the corresponding
duplicate), at the expense of giving up unitarity. This
can be easily realized by formally performing a partial
trace in Eq. (4), which immediately results in the following
equivalent expression for the bipartite OTOC.
Proposition 7: Let ΛðAÞ

t ðρAÞ≔TrB½UtðρA⊗IB=dBÞU†
t �

be the reduced dynamics over A when the environment
B is initialized in a maximally mixed state. Then,

GðtÞ ¼ 1 −
1

d2A
Tr½SAA0 ðΛðAÞ

t Þ⊗2ðSAA0 Þ�: ð12Þ

The analogous expression for BB0 also holds.
The quantum map ΛðχÞ

t is unital; i.e., the maximally
mixed state is a fixed point. As such, the transformation
ρχ ↦ ΛðχÞ

t ðρχÞ results always in an output state whose
spectrum is more disordered than the input one [81]. As a
result, when ρχ is pure, the effect of the reduced time
dynamics is to scramble and, hence, produce entropy. Let
us now turn to examine this connection more closely.
Bipartite OTOC as entropy production.—We now show

that the bipartite OTOC GðtÞ is nothing but a measure of
the average entropy production over pure states, with the
latter quantified by linear entropy Slin.

FIG. 1. Logarithmic plot of various Ḡ estimates, along with the
exact time average, for fixed dA ¼ 2 as a function of the total
number of spins n. ḠHaar

∞ ¼ 3=4 corresponds to the Haar estimate
for n → ∞. For the chaotic phase of the TFIM (g ¼ −1.05,
h ¼ 0.5), the NRC constitutes a satisfactory, though imperfect,
approximation. The chaotic and integrable phases (h ¼ 0) can be
clearly distinguished through the equilibration behavior of the
bipartite OTOC. For the integrable XXZ model (we set J ¼ 0.4,
Δ ¼ 2.5), the NRCþ estimate coincides (up to numerical error)
with the exact time average. Inequality (11) holds valid in
all cases.
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Theorem 8:

GðtÞ ¼ dχ þ 1

dχ

Z
dUSlin½ΛðχÞ

t ðjψUihψUjÞ�; ð13Þ

where χ ¼ A, B and jψUi ≔ Ujψ0i corresponds to Haar
random pure states over Hχ.
In this manner, the bipartite OTOC can be fully char-

acterized by linear entropy measurements over any of the A,
B subsystems. To obtain a satisfactory estimate of the mean
in the rhs of Eq. (13), one does not, in practice, need to
sample over the full Haar ensemble. An adequate estimate
can be obtained with a rapidly decreasing number of
necessary samples, as the dimension dχ grows. More
precisely, let P̃ðϵÞ be the probability of the entropy
Slin½ΛðχÞ

t ðjψihψ jÞ� deviating from ½dχ=ðdχ þ 1Þ�GðtÞ more
than ϵ for an instance of a random state. We show in
Ref. [41] that

P̃ðϵÞ ≤ exp

�
−
dχϵ2

64

�
: ð14Þ

The linear entropy, although, per se, a nonlinear func-
tional, can be turned into an ordinary expectation value if
two (uncorrelated) copies of the quantum state are simul-
taneously available, 1 − Slin ¼ TrðSρ⊗2Þ for S ¼ SAA0SBB0.
This fact can be exploited to simplify its experimental
accessibility [82–86]. More recently, protocols based on
correlating measurements over random bases have also
been developed to measure entropies [87–90], as well as
OTOCs [91,92]. As a result, Theorem 8 and the typicality
result Eq. (14) suggest that the bipartite OTOC is, in turn,
tractable via linear entropy measurements. We provide
more details in Ref. [41].
From Eq. (13), one can also infer the upper bound

GðtÞ ≤ 1 − 1=d2χ ≔ GðχÞ
max announced earlier that follows

from the range of the linear entropy function. The bound is
thus achievable only when ΛðχÞ

t is equal to the completely
depolarizing map T ðχÞð·Þ ≔ Trð·ÞðIχ=dχÞ.
Finally, we remark that linear entropy occurs rather

naturally in relation with the bipartite OTOC, as demon-
strated by Theorem 2 (where it lies implicitly in the
definition of operator entanglement and entangling power)
and Theorem 8. This fact has its roots in the definition of
the OTOC, which is intimately related to the Frobenius
norm. Relevant relations for the linear entropy have been
also reported in Ref. [31]. Starting from the inequality
SlinðρÞ ≤ SðρÞ between the linear and von Neumann
entropies (SðρÞ ≔ −Tr½ρ logðρÞ�), one can also obtain the
corresponding estimates for the latter.
Bipartite OTOC and information spreading.—The bipar-

tite OTOC measures the average ability of the reduced time
evolution to erase information, as captured by the entropy
production over a random pure state. This naturally raises the
question as to whether GðtÞ can also be understood as a

measure of distance between ΛðχÞ
t and the depolarizing

map T ðχÞ, that is, in the space of quantum channels
[i.e., completely positive and trace preserving (CPTP)
maps [93] ].
A straightforward answer can be obtained by resorting to

the duality between quantum states and operations [93].
Let ρE ≔ E ⊗ IðjϕþihϕþjÞ denote the (Choi) state
corresponding to the CPTP map E, where jϕþi ≔
d−1=2

P
d
i¼1 jiii is a maximally entangled state.

Proposition 9: The bipartite OTOC is a measure of the
distance between the reduced time evolution and the
depolarizing map:

GðtÞ ¼ GðχÞ
max − kρΛðχÞ

t
− ρT ðχÞk22: ð15Þ

As an application, the proposition above can be utilized

to bound the distance kΛðχÞ
t − T ðχÞk◊ given by the diamond

norm [94,95]; the latter is a well-established measure of
distance between quantum channels, since it admits an
operational interpretation in terms of discrimination on the
level of quantum processes [96]. Bounding the difference in
terms of the quantum processes also constrains the dis-
tinguishability in terms of states: kE1ðρÞ − E2ðρÞk1 ≤
kE1 − E2k◊ for all states and quantum processes. The

distinguishability of the two operations satisfies kΛðχÞ
t −

T ðχÞk◊ ≤ d3=2χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðχÞ

max −GðtÞ
q

(see [41]); therefore, if

GðχÞ
max − GðtÞ decays faster than d−3χ , then asymptotically

the two channels are essentially indistinguishable.
Summary.—We showed that the bipartite OTOC is

amenable to exact analytical treatment and, quite remark-
ably, is equal to the operator entanglement of the dynamics.
This identity allows one to establish a rigorous quantitative
connection between the OTOC and the notion of entangling
power, a well-established quantifier of few-body chaos.
This may provide insights into recent work involving “dual
unitaries” and many-body chaos [97–100]; the latter
maximize operator entanglement [100,101]. We then
turned to late-time averages of the bipartite OTOC and
provided a hierarchy of estimates for systems that violate
the conditions of a “generic spectrum.” Finally, we unrav-
eled the operational significance of the OTOC by establish-
ing intimate connections with entropy production and
information scrambling at the level of quantum channels.
Possible future directions include applying further these
theoretical tools to concrete many-body systems and
uncovering relations with thermalization, localization,
and other many-body phenomena.
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Supplemental Material for “Information Scrambling over Bipartitions: Equilibration,
Entropy Production, and Typicality”

I. PROOFS

Here we restate the Theorems and Propositions, as well as other mathematical claims appearing in the main text,
and give their proof.

Theorem 1

Theorem 1. Let SAA′ be the operator over H⊗H′ that swaps A with its replica A′ and d = dim(H). Then

G(t) = 1− 1

d2
Tr
(
SAA′U⊗2

t SAA′U†⊗2
t

)
. (4)

The analogous expression for BB′ also holds.

Proof. Let S be the operator over H⊗H′ that swaps H with its replica H′. Then for any operators X,Y acting over
H it holds that

Tr (XY ) = Tr [S(X ⊗ Y )] , (S1)

as it can be easily verified by expressing both sides in a basis. Notice that in our case, where H carries a bipartition,
one can further decompose S = SAA′SBB′ .

Using the above identity the OTOC averaging in Eq. (3) can be written as

G(t) = 1− 1

d
Re

∫
dV dW Tr

(
S V †A(t)W †B ⊗ VA(t)WB

)
= 1− 1

d
Re

∫
dV dW Tr

(
SU†⊗2

t (V †A ⊗ VA)U⊗2
t (W †B ⊗WB)

)
= 1− 1

d
Re Tr

[
SU†⊗2

t

(∫
dV V †A ⊗ VA

)
U⊗2
t

(∫
dWW †B ⊗WB

)]
.

Now the two independent averages can be easily performed since for unitary operators over H ∼= Cd the corresponding
Haar integrals evaluate to ∫

dUU ⊗ U† =
S

d
(S2)

where S is again the swap operator over the doubled space.
A quick way to prove the well-known identity (S2) is by using Eq. (S1) to write

UXU† = TrH′
[
(U ⊗ U†)(X ⊗ I)S

]
and then using the fact that ∫

dUUXU† =
Tr(X)

d
(S3)

which follows directly from the left/right invariance of the Haar measure [1].
Using Eq. (S2) twice, we get

G(t) = 1− 1

d
Re Tr

(
SU†⊗2

t

SAA′

dA
U⊗2
t

SBB′

dB

)
= 1− 1

d2
Tr
(
SAA′U⊗2

t SAA′U†⊗2
t

)
.

Since
[
S,X⊗2

]
= 0 for all operators X, the analogous expression for BB′ holds, i.e.,

G(t) = 1− 1

d2
Tr
(
SBB′U⊗2

t SBB′U†⊗2
t

)
. (S4)

�
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Notice that the symmetry of the Haar measure forces the bipartite OTOC to be time-reversal invariant, i.e.,
G(t) = G(−t).

Finally, we also note that that there is a straightforward generalization of Theorem 1 to any finite temperature
thermal state. Following similar steps as above, one gets for for the thermal version of the bipartite OTOC

G(t) = 1− 1

d
Re Tr

(
(ρβ ⊗ IA′B′)U†⊗2

t SAA′U⊗2
t SAA′

)
. (S5)

Theorem 2

Theorem 2. Let GU denote the bipartite OTOC for the evolution U . Then, (i) Eop(Ut) = GUt , and (ii) for a
symmetric bipartition dA = dB,

eP(Ut) =
d

(
√
d+ 1)2

(GUt +GUtSAB −GSAB ) . (5)

Before giving the proof, let us first recall the definitions of operator entanglement [2] and entangling power [3].
The main idea behind operator entanglement is to first express the unitary evolution U (over the bipartite Hilbert

space HAB) as a state in the doubled space HAB ⊗HA′B′ via

|U〉 = U ⊗ IA′B′ |φ+〉 (S6)

for the maximally entangled state |φ+〉 = 1√
d

∑d
i=1 |i〉AB |i〉A′B′ and then evaluate the linear entropy of the state

σU = TrBB′ (|U〉〈U |), i.e.,

Eop(U) := Slin(σU ) = 1− Tr(σ2
U ). (S7)

The entangling power [3] of a quantum evolution U over a bipartite quantum system H = HA⊗HB is defined as the
average entanglement that the evolution generates when acting on random separable pure states. More specifically,

eP(U) :=

∫
dV dWE [U (|ψV 〉A |ψW 〉B)] , (S8)

where |ψV 〉A = V |ψ0〉A corresponds to Haar random pure states over A (|ψ0〉A is an irrelevant reference state), and
similarly for B, while E(|ψAB〉) := Slin (TrB |ψAB〉〈ψAB |) is the entanglement of the resulting state, as measured by
the linear entropy.

Proof. (i) The key observation here is that the bipartite OTOC GUt , in the form of Eq. (4), coincides with the
operator entanglement E(Ut) as defined in Ref. [2] (see Eq. (6) therein). Evaluating the expression (S7), as in the
proof of Theorem 1, one obtains exactly Eq. (4), hence Eop(Ut) = GUt .
(ii) For the symmetric case dA = dB , the result follows by combining the first part of the current Theorem and

Eq. (12) of Ref. [2].
Finally, we note that by direct substitution, one has GSAB = 1− 1/d. �

Proposition 3

Proposition 3. Let P (ε) be the probability that a random instance of CVA,WB
(t) deviates from its Haar average G(t)

more than ε. Then,

P (ε) ≤ 2 exp

(
−ε

2dmax

64

)
, (6)

where dmax = max{dA, dB}.

The proof relies on measure concentration and, in particular, Levy’s lemma which we shall recall shortly (see,
e.g., [4]). Below we are also going use various operator (Schatten) k-norms [5]; the latter are defined as ‖X‖k :=(∑

i s
k
i

)1/k
where {si}i are the singular values of X. The case ‖X‖∞ := maxi {si}i corresponds to the usual operator

norm. For k ≥ l, one always has ‖X‖k ≤ ‖X‖l.
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We also remind the reader that a function f : U(d) → R is said to be Lipschitz continuous with constant K if it
satisfies

|f(V )− f(W )| ≤ K ‖V −W‖2 (S9)

for all V,W ∈ U(d). For brevity, in this section we denote the Haar averages as 〈(·)〉U and also occasionally drop the
explicit time dependence.

Theorem (Levy’s lemma). Let U ∈ U(d) be distributed according to the Haar measure and f : U(d) → R be a
Lipschitz continuous function. Then for any ε > 0

Prob{|f(U)− 〈f(U)〉U | ≥ ε} ≤ exp

(
− dε2

4K2

)
, (S10)

where K is a Lipschitz constant.

During the course of the proof of Proposition 3, the following two continuity results will come in handy.

Lemma 1. (i) The function fW (V ) : U(dA) → R with fW (V ) := CVA,WB
(t) is Lipschitz continuous with constant

Kf = 2 for all t ∈ R and W ∈ U(dB).

(ii) The function g(W ) : U(dB) → R with g(W ) := 〈CVA,WB
(t)〉V is Lipschitz continuous with constant Kg = 2/dA

for all t ∈ R.

Proof of lemma. (i) Let X,Y ∈ U(dA). We need to show that

|fW (X)− fW (Y )| ≤ Kf ‖X − Y ‖2 .

Following the proof of Theorem 1, we can express

fW (V ) = 1− 1

d
Re Tr

[
SU†⊗2

t (V †A ⊗ VA)U⊗2
t (W †B ⊗WB)

]
therefore

|fW (X)− fW (Y )| ≤ 1

d

∣∣∣Tr
[
U⊗2
t (W †B ⊗WB)SU†⊗2

t (X†A ⊗XA − Y †A ⊗ YA)
]∣∣∣

≤ 1

d

∥∥X†A ⊗XA − Y †A ⊗ YA
∥∥

1
,

where in the last step we used the inequality ‖Tr (AB)‖ ≤ ‖A‖1 ‖B‖∞ and the fact that
∥∥U⊗2

t (W †B⊗WB)SU†⊗2
t

∥∥
∞ = 1

since the operator within the norm is unitary.

In order to express the last norm as a function of the difference XA − YA, we first add and subtract Y †A ⊗XA and
then use the triangle inequality. This results in

1

d

∥∥X†A ⊗XA − Y †A ⊗ YA
∥∥

1
≤ 1

d

(∥∥(X†A − Y
†
A)⊗XA

∥∥
1

+
∥∥Y †A ⊗ (XA − YA)

∥∥
1

)
≤ 1

d

(∥∥X†A − Y †A∥∥∞∥∥I ⊗XA

∥∥
1

+
∥∥XA − YA

∥∥
∞

∥∥Y †A ⊗ I∥∥1

)
where for the last step we utilized the inequality ‖AB‖1 ≤ ‖A‖1 ‖B‖∞. Now notice that

∥∥I ⊗XA

∥∥
1

= d since XA is

unitary, and similarly for
∥∥Y †A ⊗ I∥∥1

. Therefore we can bound

|fW (X)− fW (Y )| ≤
∥∥XA − YA

∥∥
∞ +

∥∥X†A − Y †A∥∥∞ ≤ 2
∥∥XA − YA

∥∥
∞ = 2

∥∥X − Y ∥∥∞ ≤ 2
∥∥X − Y ∥∥

2
,

from which clearly one can take Kf = 2.

(ii) First notice that the Haar average over VA = V ⊗ IB can be performed, as was done in the proof of
Theorem 1. The result is

g(W ) = 1− 1

d
Re Tr

[
SU†⊗2

t

SAA′

dA
U⊗2
t W †B ⊗WB

]
= 1− 1

d
Re Tr

[
U†⊗2
t

SBB′

dA
U⊗2
t W †B ⊗WB

]
.
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Considering the relevant difference, we can bound

|g(X)− g(Y )| ≤ 1

dA

1

d

∣∣∣Tr
[
U†⊗2
t SBB′U⊗2

t (X†B ⊗XB − Y †B ⊗ YB)
]∣∣∣

≤ 1

dA

1

d

∥∥X†B ⊗XB − Y †B ⊗ YB
∥∥

1
.

Now one can follow the exact same steps as in part (i); the result is identical except of the extra factor 1/dA that
carries through, which originates from the averaging. This results in

|g(X)− g(Y )| ≤ 2

dA

∥∥X − Y ∥∥
2

from which one can take Kg = 2/dA. �

Everything is now in place to give the proof of Proposition 3.

Proof. Let ε > 0. We want to show that, for V ∈ U(dA) and W ∈ U(dB) distributed independently according to the
Haar measure, it holds

Prob (γ ≥ ε) ≤ exp

(
−ε

2dmax

64

)
where γ := |CVA,WB

−G| and by definition G = 〈CVA,WB
〉V,W .

Let us consider any pair VA,WB that satisfies ε ≤ γ. Then, from the triangle inequality also

ε ≤ α+ β,

where we set α :=
∣∣CVA,WB

− 〈CVA,WB
〉V
∣∣ and β :=

∣∣〈CVA,WB
〉V −G

∣∣. Hence we have for the corresponding proba-
bilities

Prob {γ ≥ ε} ≤ Prob {α+ β ≥ ε} .

However, if α+ β ≥ ε then necessarily α ≥ ε/2 or β ≥ ε/2, therefore we also have

Prob {α+ β ≥ ε} ≤ Prob ({α ≥ ε/2} ∪ {β ≥ ε/2}) .

Using the standard union bound over the last expression results in

Prob {γ ≥ ε} ≤ Prob {α ≥ ε/2}+ Prob {β ≥ ε/2} . (S11)

The two Probabilities in Eq. (S11) can be bounded using Levy’s lemma. For that, let us first define the auxiliary
functions fW (V ) and g(W ) as in Lemma 1. Combining the Lipschitz continuity result from there with Levy’s lemma,
one gets measure concentration bounds

ProbV {
∣∣CVA,WB

− 〈CVA,WB
〉V
∣∣ ≥ ε/2} ≤ exp

(
−dAε

2

64

)
∀W (S12a)

Prob{〈CVA,WB
〉V −G ≥ ε/2} ≤ exp

(
−d

2
AdBε

2

64

)
(S12b)

We are almost done; it suffices to notice that the bound (S12a) is uniform in W , hence it is also applicable to
Prob {α ≥ ε/2}. Therefore we arrive at

Prob{|CVA,WB
(t)−G(t)| ≥ ε} ≤ exp

(
−dAε

2

64

)
+ exp

(
−d

2
AdBε

2

64

)
≤ 2 exp

(
−dAε

2

64

)
. (S13)

Notice the resulting bound is independent of the dynamics, as long as the latter is unitary. Finally, one can obtain
the analogous bound for A↔ B by inverting the roles of V and W in the proof. Therefore we obtain Eq. (6). �
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Proposition 4

Proposition 4. Consider a Hamiltonian satisfying the NRC. Then

G(t)
NRC

= 1− 1

d2

∑
χ∈{A,B}

(∥∥R(χ)
∥∥2

2
− 1

2

∥∥R(χ)
D

∥∥2

2

)
(7)

where R(χ) is the Gram matrix of the reduced Hamiltonian eigenstates {ρ(χ)
k }dk=1, i.e.,

R
(χ)
kl := 〈ρ(χ)

k , ρ
(χ)
l 〉 (8)

while
(
R

(χ)
D

)
kl

:= R
(χ)
kl δkl.

Here we give a straightforward proof assuming the NRC holds exactly. For a more detailed discussion, see also the
section of the proof of Theorem 6.

Proof. Our starting point is Eq. (4), which we need to time-average. Since the Hamiltonian is by assumption nonde-

generate, we can spectrally decompose H =
∑d
k=1EkPk, where Pk := |φk〉〈φk|. We then have

G(t)
NRC

= 1− 1

d2

∑
klmn

exp
[
i(Ek + El − Em − En)t

]
Tr [SAA′(Pk ⊗ Pl)SAA′ (Pm ⊗ Pn)] .

Time-averaging the exponential results in

exp
[
i(Ek + El − Em − En)t

]
= δEk+El−Em−En,0

NRC
== δk,mδl,n + δk,nδl,m − δk,lδl,mδm,n

where in the last step we used the fact that energy gaps are nondegenerate. Thus

G(t)
NRC

= 1− 1

d2

(∑
kl

Tr [SAA′(Pk ⊗ Pl)SAA′ (Pk ⊗ Pl)] +
∑
kl

Tr [SAA′(Pk ⊗ Pl)SAA′ (Pl ⊗ Pk)]

−
∑
k

Tr [SAA′(Pk ⊗ Pk)SAA′ (Pk ⊗ Pk)]
)

= 1− 1

d2

(∑
kl

∣∣Tr [(Pk ⊗ Pl)SAA′ ]
∣∣2 +

∑
kl

∣∣Tr [(Pk ⊗ Pl)SBB′ ]
∣∣2 −∑

k

∣∣Tr [(Pk ⊗ Pk)SAA′ ]
∣∣2),

where for the second term we used that Pl ⊗ Pk = S(Pk ⊗ Pl)S and S = SAA′SBB′ .
Now, notice that partial traces can be formally performed, giving

TrAA′BB′ [(Pk ⊗ Pl)SAA′ ] = TrAA′ [TrBB′(Pk ⊗ Pl)SAA′ ] = TrAA′

[
(ρ

(A)
k ⊗ ρ(A′)

l )SAA′

]
= Tr

(
ρ

(A)
k ρ

(A)
l

)
= R

(A)
kl ,

and similarly

TrAA′BB′ [(Pk ⊗ Pl)SBB′ ] = R
(B)
kl

TrAA′BB′ [(Pk ⊗ Pk)SAA′ ] = TrAA′BB′ [(Pk ⊗ Pk)SBB′ ] = R
(A)
kk = R

(B)
kk

where in the last line we used the fact that the spectra of ρ
(A)
k and ρ

(B)
k are equal, up to (irrelevant for the trace)

zeroes. The result follows by expressing the matrix 2-norm as ‖X‖22 =
∑
ij |Xij |2. �

Proposition 5

Before proceeding with the proof, let us briefly comment on the need of including the parameter α, which corresponds
to the fraction of the highly entangled eigenstates of the Hamiltonian. For certain Hamiltonian models (e.g., the class
of gapped, local Hamiltonians over one-dimensional lattice systems) it is well known that the ground state follows an
area law for the entanglement entropy [6]. Thus for larger system sizes ε cannot be chosen to be small for the ground
state (and also possibly for the low lying excited states), even for the symmetric dA = dB bipartition. Nevertheless,
in the bulk of the spectrum, typical eigenstates are expected to obey instead a volume law, which is compatible with
an ε that can be chosen to be suitably small. Therefore, we expect that, for certain physically relevant models, a large
fraction α can be assumed to satisfy this condition.
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Proposition 5. If Emax − E(|φk〉) ≤ ε holds for at least a fraction α of the Hamiltonian eigenstates, then∣∣GME(t)
NRC
−G(t)

NRC∣∣ ≤ αJ + (1− α)K, where

J :=
6ε

dmin
+

5ε2

2
+ 2

λ2 − 1

d2
max

(9a)

K :=

(
1 +

2

dmin

)
(1− α) +

2

d
+ 4(ε+

√
ε) (9b)

and λ = dmax/dmin.

Proof. To simplify the notation, we assume dA ≤ dB . Let us also define I = {k : Emax − E(|φk〉) ≤ ε}, i.e., I is the
index set of those Hamiltonian eigenstates that deviate at most by ε from Emax, while we use Ī to label the rest of
the eigenstates. By assumption, |I| ≥ αd.

First of all, notice that one can express the difference Emax − E(|ψAB〉) as the distance

Emax − E(|ψAB〉) = Tr(ρ2
B)− 1/dB =

∥∥ρB − I/dB∥∥2

2
≥
∥∥ρA − I/dA∥∥2

2
= Tr(ρ2

A)− 1/dA .

Setting for brevity ∆
(χ)
k := ρ

(χ)
k − I/dχ (χ = A,B), we have for all k ∈ I that Emax − E(|φk〉) =

∥∥∆
(B)
k

∥∥2

2
≤ ε and

hence also
∥∥∆

(A)
k

∥∥2

2
=
∥∥ρ(A)

k − I/dA
∥∥2

2
≤ ε. It will be convenient for later to express

∣∣ 〈ρ(χ)
k , ρ

(χ)
l 〉

∣∣2 =
∣∣ 〈I/dχ + ∆

(χ)
k , I/dχ + ∆

(χ)
l 〉

∣∣2 =
∣∣ 1

dχ
+ 〈∆(χ)

k ,∆
(χ)
l 〉

∣∣2 =
1

d2
χ

+
2

dχ
〈∆(χ)

k ,∆
(χ)
l 〉+ 〈∆(χ)

k ,∆
(χ)
l 〉

2
.

(S14)

Moreover, by the Cauchy-Schwartz inequality,∣∣ 〈∆(χ)
k ,∆

(χ)
l 〉

∣∣ ≤ ∥∥∆
(χ)
k

∥∥
2

∥∥∆
(χ)
l

∥∥
2

(S15a)

while

∥∥∆
(χ)
k

∥∥2

2
≤

{
ε if k ∈ I,
1− 1

dχ
otherwise.

(S15b)

Let’s start from Eq. (7). Using the fact that
∥∥R(A)

D

∥∥2

2
=
∥∥R(B)

D

∥∥2

2
and recalling GME(t)

NRC
= (1− 1/d)2 we get by

the triangle inequality∣∣GME(t)
NRC
−G(t)

NRC
∣∣∣ ≤ ∣∣∣ 1

d2

∥∥R(A)
∥∥2

2
− 1

d

∣∣∣+
∣∣∣ 1

d2

∥∥R(B)
∥∥2

2
− 1

d

∣∣∣+
1

d2

∣∣∥∥R(A)
D

∥∥2

2
− 1
∣∣. (S16)

To bound the first term we write∣∣∣ 1

d2

∥∥R(A)
∥∥2

2
− 1

d

∣∣∣ =
∣∣∣ 1

d2

∑
kl

∣∣ 〈ρ(A)
k , ρ

(A)
l 〉

∣∣2 − 1

d

∣∣∣ ≤ 1

d2
A

− 1

d
+

1

d2

∑
kl

(
2

dA

∣∣ 〈∆(A)
k ,∆

(A)
l 〉

∣∣+ 〈∆(A)
k ,∆

(A)
l 〉

2
)

where we used Eq. (S14). Splitting both of the sums as
∑
k =

∑
k∈I +

∑
k/∈I and using Eqs. (S15) we have

1

d2

∑
kl

∣∣ 〈∆(A)
k ,∆

(A)
l 〉

∣∣ ≤ εα2 + 2α(1− α)

√
ε

(
1− 1

dA

)
+ (1− α)2

(
1− 1

dA

)
and

1

d2

∑
kl

〈∆(A)
k ,∆

(A)
l 〉

2
≤ ε2α2 + 2α(1− α)ε

(
1− 1

dA

)
+ (1− α)2

(
1− 1

dA

)2

.

Putting them together, and relaxing some inequalities for clarity, we obtain for the first term of Eq. (S16)∣∣∣ 1

d2

∥∥R(A)
∥∥2

2
− 1

d

∣∣∣ ≤ 1

d2
A

− 1

d
+ αε

(
2

dA
+ ε

)
+ (1− α)2(1 +

2

dA
) + 2(1− α)(ε+

√
ε).
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Analogously for the second term of Eq. (S16),∣∣∣ 1

d2

∥∥R(B)
∥∥2

2
− 1

d

∣∣∣ ≤ 1

d
− 1

d2
B

+ αε

(
2

dA
+ ε

)
+ (1− α)2(1 +

2

dA
) + 2(1− α)(ε+

√
ε).

For the third one, we have∥∥R(A)
D

∥∥2

2
=
∑
k

∣∣ 〈ρ(A)
k , ρ

(A)
k 〉

∣∣2 =
dB
dA

+
2

dA

∑
k

〈∆(A)
k ,∆

(A)
k 〉+

∑
k

〈∆(A)
k ,∆

(A)
k 〉

2
.

Using similar manipulations as above, and under the convention dA ≤ dB ,

1

d2

∣∣∥∥R(A)
D

∥∥2

2
− 1
∣∣ ≤ 1

d2

(
dB
dA
− 1

)
+

1

d

[
α

(
2ε

dA
+ ε2

)
+ (1− α)

(
2

dA
+ 1

)]
Putting the inequalities together, we have

∣∣GME(t)
NRC
−G(t)

NRC∣∣ ≤
λ− 1

d2
+
λ2 − 1

d2
B

+ α

[
2ε

(
2

dA
+

1

d2
AdB

)
+ ε2

(
2 +

1

d

)]
+ (1− α)

[
2(1− α)

(
1 +

2

dA

)
+

2

d
+ 4

(
ε+
√
ε
)]

(S17)

which can be relaxed to give the final result by using
λ2 − 1

d2
B

≥ λ− 1

d2
. �

Theorem 6

Theorem 6. For any given Hamiltonian, the corresponding estimates are related with the exact time-average G(t) as

G
Haar ≥ G(t)

NRC
≥ G(t)

NRC+

≥ G(t) . (11)

Before giving the proof of the Theorem, we first briefly discuss some general facts regarding infinite time-averages,
their connection with the NRC and the NRC+, and how they give rise to the corresponding estimates.

Let us consider unitary quantum dynamics Ut(·) = Ut(·)U†t generated by a Hamiltonian H =
∑
k ẼkΠk, where Πk

denotes the projector onto the kth eigenspace. As a warm-up, let us calculate the time-average of the superoperator

Ut. The latter can be easily performed by noticing that exp
[
− i(Ẽk − Ẽl)t

]
= δkl. It results to

PH := Ut =
∑
k

Πk(·)Πk (S18)

which is the (Hilbert-Schmidt orthogonal) projector onto the commutant of the algebra generated by {Πk}k, i.e., the
projector whose range is the space of operators commuting with H.

The object of interest for us is, in fact, U⊗2
t since

G(t) = 1− 1

d2
〈SAA′ ,U⊗2

t (SAA′)〉 . (S19)

Reasoning as above, it follows that the resulting superoperator is again a projector, whose range is the space of
operators over the replicated Hilbert space H⊗2 that commute with H(2) := H ⊗ I + I ⊗ H. The projector can be
explicitly expressed as

PH(2) := U⊗2
t =

∑
klmn

δẼk−Ẽm,Ẽl−ẼnΠk ⊗Πl(·)Πm ⊗Πn (S20)

To evaluate the above sum, let us for a moment examine what happens when the energy gaps {Ẽk − Ẽl}kl are
nondegenerate. i.e.,

NRC+ : Ẽk + Ẽl = Ẽm + Ẽn ⇐⇒ (k = m ∧ l = n) ∨ (k = n ∧ l = m). (S21)



8

We will refer to this condition over the spectrum as NRC+, since it constitutes a relaxed version of the NRC. Without
any assumption over the spectrum, one can always separate two contributions

PH(2) = PNRC+ + P
NRC+ (S22)

where

PNRC+ :=
∑
kl

Πk ⊗Πl(·)Πk ⊗Πl +
∑
kl

Πk ⊗Πl(·)Πl ⊗Πk −
∑
k

Πk ⊗Πk(·)Πk ⊗Πk (S23)

and P
NRC+ is any possibly remaining piece, which vanishes if and only if the Hamiltonian does indeed satisfy NRC+.

Disregarding P
NRC+ , one gets the estimate

G(t)
NRC+

:= 1− 1

d2
Tr [SAA′PNRC+ (SAA′)] (S24)

= 1− 1

d2

(∑
kl

Tr [SAA′(Πk ⊗Πl)SAA′ (Πk ⊗Πl)] +
∑
kl

Tr [SAA′(Πk ⊗Πl)SAA′ (Πl ⊗Πk)]

−
∑
k

Tr [SAA′(Πk ⊗Πk)SAA′ (Πk ⊗Πk)]
)
, (S25)

where the second equation follows from the proof of Proposition 4. Clearly, if all projectors {Πk} are rank-1, then

Eq. (S25) collapses to the corresponding one for NRC, Eq. (7). Notice that one can evaluate G(t)
NRC+

regardless of
whether the Hamiltonian spectrum actually satisfies NRC+, and obtain the NRC+ estimate mentioned in the main
text.

Evidently, one can also express the NRC time-average, Eq. (7), in terms of the corresponding projector

G(t)
NRC

= 1− 1

d2
Tr [SAA′PNRC (SAA′)] . (S26)

If the Hamiltonian does not satisfy NRC, performing a (possibly nonunique) decomposition H =
∑
k Ek |φk〉〈φk| and

evaluating Eq. (7) gives rise to the corresponding NRC estimate.

Finally, for the case of Haar random unitaries, one has the corresponding projector U⊗2
Haar

:= PHaar whose range
is given by the algebra generated by {I, S} [7]. We evaluate its explicit expression in the next section.

We are now ready to give the proof of Theorem 6.

Proof. The key observation here is that, by construction, the range of each projector satisfies

Ran (PH(2)) ⊇ Ran (PNRC+) ⊇ Ran (PNRC) ⊇ Ran (PHaar) . (S27)

Since all of the above are Hilbert-Schmidt orthogonal projectors, it also follows that

PH(2) ≥ PNRC+ ≥ PNRC ≥ PHaar . (S28)

As a result,

〈SAA′ ,PH(2)(SAA′)〉 ≥ 〈SAA′ ,PNRC+(SAA′)〉 ≥ 〈SAA′ , PNRC(SAA′)〉 ≥ 〈SAA′ ,PHaar(SAA′)〉 , (S29)

from which Eq. (11) follows immediately. �

Proof of Eq. (10)

The Haar average

G
Haar

=
(d2
A − 1)(d2

B − 1)

d2 − 1

can be derived using fact that U⊗2
Haar

is the CPTP orthogonal projector over the algebra generated by {I, S} [7],
i.e.,

PHaar(X) := U⊗2
Haar

(X) =
1

2

∑
α=±1

I + αS

d(d+ α)
〈I + αS,X〉 , (S30)
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where S swaps H and its duplicate H′, as usual. Plugging the above into Eq. (4), one gets

G
Haar

= 1− 1

2d2

∑
α=±1

|〈I + αS, SAA′〉|2

d(d+ α)

which, after some simple algebra, simplifies to the announced result.

Theorem 8

Theorem 8.

G(t) =
dχ + 1

dχ

∫
dU Slin

[
Λ

(χ)
t (|ψU 〉〈ψU |)

]
(13)

where χ = A,B and |ψU 〉 := U |ψ0〉 corresponds to Haar random pure states over Hχ.

Proof. Let us do the χ = A case. The result relies on the observation that one can express SAA′ in Eq. (12) through
the Haar average [7] ∫

dU (|ψU 〉〈ψU |)⊗2
=

1

dA(dA + 1)
(IAA′ + SAA′) . (S31)

Performing the substitution results in

G(t) = 1 +
1

d2
A

Tr (SAA′)− dA + 1

dA

∫
dU Tr

(
SAA′

[
Λ

(A)
t (|ψU 〉〈ψU |)

]⊗2
)

=
dA + 1

dA

(
1−

∫
dU Tr

[(
Λ

(A)
t (|ψU 〉〈ψU |)

)2])
=
dA + 1

dA

∫
dU Slin

[
Λ

(A)
t (|ψU 〉〈ψU |)

]
where we used the fact that Λ

(A)
t (I) = I and the identity of Eq. (S1).

The χ = B case follows similarly. �

Proof of Eq. (14)

We need to prove that

Prob

{∣∣∣Slin

[
Λ

(χ)
t

(
|ψ〉〈ψ|

)]
− dχ
dχ + 1

G(t)
∣∣∣ ≥ ε} ≤ exp

(
−dχε

2

64

)
(S32)

where |ψ〉 is a Haar random pure state. We will make use of the concentration of measure machinery, briefly presented
before the proof of Proposition 3.

The result follows by the use of Levy’s lemma and Theorem 8, if one shows that the function f : U(dχ)→ R with

f(V ) := Slin

[
Λ

(χ)
t (|ψV 〉〈ψV |)

]
is Lipschitz continuous with K = 4. As before, we denote |ψV 〉 := V |ψ0〉 for some

(irrelevant) reference state |ψ0〉.
Indeed, let us show the Lipschitz continuity. We have∣∣f(V )− f(W )

∣∣ =
∣∣∥∥Λ(χ)

t (|ψV 〉〈ψV |)
∥∥2

2
−
∥∥Λ(χ)

t (|ψW 〉〈ψW |)
∥∥2

2

∣∣
=
(∥∥Λ(χ)

t (|ψV 〉〈ψV |)
∥∥

2
+
∥∥Λ(χ)

t (|ψW 〉〈ψW |)
∥∥

2

) ∣∣∣∥∥Λ(χ)
t (|ψV 〉〈ψV |)

∥∥
2
−
∥∥Λ(χ)

t (|ψW 〉〈ψW |)
∥∥

2

∣∣∣
≤ 2
∥∥Λ(χ)

t (|ψV 〉〈ψV |)−Λ
(χ)
t (|ψW 〉〈ψW |)

∥∥
1

≤ 2
∥∥∥Ut( |ψV 〉〈ψV | ⊗ Idχ

dχ

)
− Ut

(
|ψW 〉〈ψW | ⊗

Idχ
dχ

)∥∥∥
1

≤ 2
∥∥( |ψV 〉〈ψV | − |ψW 〉〈ψW | )⊗ Idχ

dχ

∥∥
1

= 2
∥∥ |ψV 〉〈ψV | − |ψW 〉〈ψW |∥∥1

,
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where in the second to last line we used the monotonicity of the 1-norm under the partial trace and in the last line
that it is unitarily invariant. Utilizing the inequality

∥∥X∥∥
1
≤
√

Rank(X) ‖X‖2, we have∣∣f(V )− f(W )
∣∣ ≤ 2

√
2
∥∥ |ψV 〉〈ψV | − |ψW 〉〈ψW |∥∥2

= 4
√

1− |〈ψV |ψW 〉|2

≤ 4
√

2(1− |〈ψV |ψW 〉|) ≤ 4
√

2(1− Re 〈ψV |ψW 〉)
≤ 4‖ |ψV 〉 − |ψW 〉 ‖ ≤ 4‖V −W‖∞
≤ 4‖V −W‖2

hence one can take K = 4.

Proposition 9

Proposition 9. The bipartite OTOC is a measure of the distance between the reduced time-evolution and the depo-
larizing map:

G(t) = G(χ)
max −

∥∥ρ
Λ

(χ)
t
− ρT (χ)

∥∥2

2
. (15)

Proof. Let us first express the Choi states explicitly as

ρ
Λ

(χ)
t

=
(
Λ

(χ)
t ⊗ I

)
|φ+〉〈φ+| = 1

dχ

∑
ij

Λ
(χ)
t

(
|i〉〈j|

)
⊗ |i〉〈j|

ρT (χ) =
(
T (χ) ⊗ I

)
|φ+〉〈φ+| =

(
Iχ
dχ

)⊗2

.

Writing Sχχ′ =
∑dχ
i,j=1 |i〉〈j| ⊗ |j〉〈i| one also has from Eq. (12)

G(t) = 1− 1

d2
χ

∑
ij

∥∥Λ(χ)
t

(
|i〉〈j|

)∥∥2

2
.

Thus, expanding the Choi state distance,∥∥ρ
Λ

(χ)
t
− ρT (χ)

∥∥2

2
= 〈ρ

Λ
(χ)
t
− ρT (χ) , ρ

Λ
(χ)
t
− ρT (χ)〉 = 〈ρ

Λ
(χ)
t
, ρ

Λ
(χ)
t
〉 − 2 〈ρ

Λ
(χ)
t
, ρT (χ)〉+ 〈ρT (χ) , ρT (χ)〉

=
∥∥ρ

Λ
(χ)
t

∥∥2

2
− 1

d2
χ

=
1

d2
χ

∑
ij

∥∥Λ(χ)
t

(
|i〉〈j|

)∥∥2

2
− 1

d2
χ

= 1−G(t)− 1

d2
χ

which is what we wanted. �

Proof of
∥∥Λ(χ)

t − T (χ)
∥∥
♦
≤ d3/2χ

√
G

(χ)
max −G(t) and an application on information spreading

We first remind the reader that the diamond norm can be defined as ‖X‖♦ := ‖X ⊗ Id‖1,1 where Id denotes the

identity quantum channel over H ∼= Cd and ‖X‖1,1 := sup‖A‖1=1 ‖X (A)‖1. One of the reasons for this definition is

the property that ‖X ⊗ Y‖♦ = ‖X‖♦ ‖Y‖♦, which in general fails for the ‖(·)‖1,1 norm (see, e.g., [8]).
Let us now prove that √

G
(χ)
max −G(t) ≤

∥∥Λ(χ)
t − T (χ)

∥∥
♦
≤ d3/2

χ

√
G

(χ)
max −G(t) .

Proof. The result follows easily by utilizing the inequalities∥∥ρE1 − ρE2∥∥1
≤
∥∥E1 − E2∥∥♦ ≤ d∥∥ρE1 − ρE2∥∥1

(S33)

that hold for any pair of CPTP maps. The inequality was reported by John Watrous in [9]. The result follows by use

of the inequality
∥∥X∥∥

1
≤
√
d
∥∥X∥∥

2
and Proposition 9. �
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As an additional application of Eq. (S33), we can utilize it to bound from above the fraction of time such that∥∥Λ(χ)
t − T (χ)

∥∥
♦
≥ ε holds true. This can be done by combining Eq. (S33) with our earlier time-averages. The result

Prob
{
t
∣∣ ∥∥Λ(χ)

t − T (χ)
∥∥
♦
≥ ε
}
≤ 2d

3/2
χ

εdχ
κ , (S34)

where κ :=

√
1 +

d2
χ

2

(
G

Haar −G(t)
)
, demonstrates in yet another way that if dχ � dχ and κ = O(1) (i.e., the

equilibration is sufficiently close to the Haar estimate), then the reduced evolution is necessarily close to the maximally
mixing one for a large fraction of time.

Proof. Our starting point will be inequality (S33),
∥∥Λ(χ)

t −T (χ)
∥∥
♦
≤ d3/2

χ

√
G

(χ)
max −G(t) . By taking the time-average

of both sides, and then using the concavity of the square root, we obtain

∥∥Λ(χ)
t − T (χ)

∥∥
♦
≤ d3/2

χ

√
G

(χ)
max −G(t) ≤ d3/2

χ

√(
G

(χ)
max −G

Haar)
+
(
G

Haar −G(t)
)
≤ 2

d
3/2
χ

dχ
κ ,

where we approximated the difference

G(χ)
max −G(t)

Haar
=

(d2
χ − 1)2

d2
χ(d2 − 1)

≤ 2

d2
χ

.

Finally, Eq. (S34) follows by the use of Markov’s inequality. �

II. HAAR MEASURE, UNITARY k-DESIGNS AND THE BIPARTITE OTOC

Here we discuss in more details how the Haar measure in the definition of the bipartite OTOC, Eq. (3), can be
replaced by other possible averaging choices, in a way that Eq. (4) (and everything that stems from it) remains valid.

Let us first recall the definition of a (unitary) k-design [10–14]. Consider an ensemble of unitary operators Λ =
{(pi, Ui)}i and define the family of CPTP maps

E(k)
Λ :=

∑
i

piU
⊗k
i (·)U†⊗ki (S35)

E(k)
Haar :=

∫
dU U⊗k(·)U†⊗k (S36)

for k ∈ N. The ensemble Λ forms a k-design if E(k)
Λ = E(k)

Haar. In words, a k-design emulates Haar averaging up to (at
least) the kth moment.

Now, let us investigate what is the freedom over the possible probability measures of VA and WB in Eq. (3), such
that Eq. (4) holds true without modification. It is easy to see, by the proof of Theorem 1, that we are in fact looking
for a unitary ensemble Λ retaining the validity of Eq. (S2). In turn, the latter is just a vectorized form of the 1-design

condition E(1)
Λ = E(1)

Haar. One can therefore substitute the Haar measure over U(dA) and U(dB) with 1-designs over
the corresponding spaces; the full Haar randomness is not probed by the OTOC [14].

Moreover, 1-designs factorize, i.e., if Λ1 = {(p(1)
i , U

(1)
i )}i and Λ2 = {(p(2)

j , U
(2)
j )}j are 1-designs over HA and HB

respectively, then Λ1 ⊗ Λ2 := {(p(1)
i p

(2)
j , U

(1)
i ⊗ U (2)

j )}ij is a 1-design over H = HA ⊗ HB . This follows just by the

1-design condition in the form of Eq. (S2) and the fact that the swap operator over the duplicated space H ⊗ H′
factorizes SAB;A′B′ = SAA′SBB′ .

This last fact has an important implication for the physically relevant case of many-body systems. Consider the

case where Hχ =
⊗

iH
(i)
χ for χ = A,B, i.e., when A and B are made up of (not necessarily identical) individual

subsystems. Then the OTOC of Eq. (3) remains unchanged if the averages
∫
dVA and

∫
dWb are replaced by the

unitary ensemble
⊗

i Λ
(i)
χ , where each Λ

(i)
χ is a 1-design on H(i)

χ . In other words, it is always enough to average over

unitary operators that factorize completely. For instance, in the case of a spin-1/2 many-body system H(i)
χ
∼= C2 such

an example is given by the Pauli 1-design Λ
(i)
χ,Pauli := {1/4, σk}3k=0 [15].
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III. ESTIMATING THE BIPARTITE OTOC VIA LINEAR ENTROPY MEASUREMENTS OF
RANDOM PURE STATES

Here we present a basic protocol, stemming directly from Theorem 8, for the estimation of the bipartite OTOC via
repeated measurements of a single expectation value.

  

FIG. S1. Protocol to for the estimation of the purity 1 − Slin

[
Λ

(A)
t (|ψ〉〈ψ|)

]
according to Eq. (13). The resulting purity

constitutes also an estimate of the bipartite OTOC, up to a simple proportionality factor. The final measurement of the
swap operator can be realized, for instance, by measuring the expectation value of A and A′ over any preferred product basis
{|i〉 ⊗ |j〉}dAi,j=1, without the need for coherences.

.

As pointed out in the main text, the linear entropy of a state can be expressed as an expectation value, 1−Slin(ρ) =
Tr
(
Sρ⊗2

)
at the expense of requiring two copies of the state ρ, though uncorrelated. Combining Theorem 8 with the

above observation, one can realize a simple protocol for estimating the bipartite OTOC via measuring the expectation
value of the swap operator over pairs of randomly generated states |ψ〉 ∈ HA. We schematically draw the protocol in
Figure S1.

Averaging the resulting expectation value over Haar random pure states |ψ〉 converges to the exact value of the
bipartite OTOC. In light of Eq. (14), the expected number of sample for this convergence to a given accuracy drops
fast as dA increases. Clearly, the corresponding protocol with the roles of A and B interchanged is formally equivalent.

Along conceptually similar lines, there have been a number of proposals for probing the linear entropy of a state in
an experimentally accessible way. For example, in a recent experiment [16] quantum purity (which is directly related
to the second-order Rényi entanglement entropy) was measured by interfering two uncorrelated but identical copies
of a many-body quantum state; similar ideas have also been considered previously [17–20]. In particular, this scheme
neither requires full quantum state tomography nor the use of entanglement witnesses to estimate entanglement of a
quantum state.

Furthermore, there have been recent proposals for protocols based on measurements over random local bases that
can probe entanglement given just a single copy of the quantum state, and, in this sense, go beyond traditional
quantum state tomography. The main idea consists of directly expressing the linear entropy [21, 22], as well as other
functions of the state [23], as an ensemble average of measurements over random bases. Related ideas have also been
adapted to probe OTOCs [24, 25] and mixed state entanglement [26].
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