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We introduce a framework for simulating quantum optics by decomposing the system into a finite rank (number of
terms) superposition of coherent states. This allows us to define a resource theory, where linear optical operations
are “free” (i.e., do not increase the rank), and the simulation complexity for an m-mode system scales quadratically
in m, in stark contrast to the Hilbert space dimension. We outline this approach explicitly in the Fock basis, relevant
in particular for Boson sampling, where the simulation time (space) complexity for computing output amplitudes,
to arbitrary accuracy, scales as O(m2 2n) [O(m2n)] for n photons distributed among m modes. We additionally
demonstrate that linear optical simulations with the n photons initially in the same mode scales efficiently, as
O(m2 n). This paradigm provides a practical notion of “non-classicality,” i.e., the classical resources required
for simulation. Moreover, by making connections to the stellar rank formalism, we show this comes from two
independent contributions, the number of single-photon additions and the amount of squeezing.
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1. INTRODUCTION
The classical simulation of quantum mechanics is a critically
important field for science in general. Not only does this pursuit
allow us to push the boundaries of what is possible to sim-
ulate, it also enables new insights into notions of complexity
and information theory. The field of quantum computing itself
has its origins in classical simulation, with early observations
by Feynman and Manin that quantum mechanics, seemingly,
is incompatible with classical mechanics, in a particular com-
putational sense. Indeed, the advent of quantum complexity
theory and several pioneering works in the 1990s suggested
that the class of problems efficiently computable on a (ran-
domized) classical computer (BPP) is a strict subset of those
efficiently computable on a quantum computer (BQP), up to
standard complexity theoretic assumptions [1].

Quantum simulation has itself been driven by experimen-
tal developments in the field of quantum computing, for as
sizes in the lab increase, increasingly better classical simu-
lation tools are required for verification [2–4]. As a result, a
plethora of techniques have been developed for such purposes
in finite-dimensional systems, including state vector simulation
[5], stabilizer state simulation [6–8], tensor network methods
[9–12], and many other optimized routines within these broad
classes [13–16].

Infinite-dimensional systems are typically treated quite dis-
tinctly from finite-dimensional ones in terms of simulation,
although there are certain similarities. For example, a gener-
alization of the Clifford group to infinite dimensions, via the
Weyl relations, allows for a stabilizer formalism to be employed

[17], which shows that Gaussian computations can be simulated
efficiently, in a similar sense to the Gottesman–Knill theorem in
finite dimensions [18,19]. Conversely, the phase space formal-
ism, originally developed for continuous variable (CV) systems
[20], can also be defined in finite dimensions, which connects
the negativity of the discrete Wigner function to the ability
to attain a “quantum speedup” [21–23]. In addition, and more
recently, tensor network methods for Bosonic systems have also
been explored [24–26]. Improvements to non-Gaussian simula-
tion continue to increase the threshold for a quantum advantage
[27–29] and our understanding of the intrinsic complexity of
simulating these systems [30–32]. We review other relevant
simulation techniques in Section 2.

1.1. Contributions

In this work, we outline an approach to the simulation of infinite-
dimensional systems, inspired by stabilizer rank simulations
in finite-dimensional systems with “magic” [8]. First we show
(Theorem 1) that any state in the Fock basis can be decomposed,
to arbitrary accuracy, as a finite superposition of coherent states.
Then, with such a decomposition, we demonstrate that the cost
of classically simulating linear optics (Theorem 2), and Fock
basis measurements (Section 3.4), scale linearly with respect to
the number of terms in the decomposition. This results in a sim-
ulation time complexity for computing Fock state amplitudes in
the setting of Boson sampling, scaling as O(m22n) for n photons
in m modes, scale similarly in n with techniques relying upon
permanent calculations [though the memory overhead in our
approach is worse, O(m2n) versus O(m)] [30,31]. In addition,
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we note that this approach can simulate bunched n photon sys-
tems |n⟩|0⟩⊗m−1 in a time that scales linearly in the number of
photons, O(nm2) (note, permanent computations also reduce to
similar complexity in this case). This allows up to a logarithmic
number of N00N states (|N0⟩ + |0N⟩)—fundamental for quan-
tum metrology and sensing [33]—to be simulated efficiently, in
a linear optical setting. Moreover, the framework is flexible in
the sense that it can, in principle, simulate both linear and non-
linear optics, finite photon number states, coherent states, and
squeezed states in the same manner (though these do not all have
the same simulation complexity, i.e., some are less efficient).

In Section 5, we also discuss trade-offs that can be employed,
interchanging accuracy (fidelity) for simulation cost (memory
and time). Further, we outline an approach that can be applied
to circuits with structure, partitioning the system according to
the number of entangling operations, resulting in a time and
memory saving for certain simulations.

This work provides a well-defined notion of classical com-
plexity for the simulation of infinite-dimensional quantum
systems, related to the efficiency of a decomposition to coherent
states. Indeed, coherent states are often considered the “most
classical” of quantum states [34], and the simulation cost in
this framework is linear in the number of these classical states.
As such, we construct a quantum resource theory for coherent
state basis simulations (Section 4), which further relates this
“non-classicality” to: (i) the number of photon additions and (ii)
the amount of squeezing required to construct a state. We com-
pare this resource to the non-Gaussianity measures, the Wigner
negativity, and the stellar rank.

2. BACKGROUND
2.1. Hilbert Space, Operators, and States

Here we introduce necessary prerequisites and notation for
what is to follow in Section 3. The starting point is a separa-
ble infinite-dimensional Hilbert space, H∞, such as the Hilbert
space for a particle in one dimension (the space of square inte-
grable functions over the real line). By definition, such a Hilbert
space admits a countable orthonormal basis,H∞ = span{|n⟩}∞n=0,
which we will call the Fock basis. Each basis element, |n⟩, will be
called a single mode Fock state (or simply Fock state). Although
we have not specified the system per se, for ease of language,
we will refer to |n⟩ as the Fock state of n photons. Also note
that while in this section we will focus on the single-mode case,
the discussion generalizes straightforwardly to the multi-mode
case,H = H ⊗m

∞ = span{|n1, . . . , nm⟩}
∞
ni=0, where m is the number

of modes.
With the basis in hand, we can construct relevant operators

for quantum optics. In particular, we define the annihilation and
creation operators,

â =
∞∑︂

n=1

√
n|n − 1⟩⟨n|, â† =

∞∑︂
n=0

√
n + 1|n + 1⟩⟨n|.

While these operators themselves are not Hermitian, they con-
stitute the building blocks for all observable operators of interest
in the present work. We will define these concisely below and
then discuss some of their properties, listed as follows.

(1) The number operator: n̂ = â†â =
∑︁∞

n=0 n|n⟩⟨n|.
(2) The “position” operator: q̂ = (â† + â)/2.
(3) The “momentum” operator: p̂ = i(â† − â)/2.

(4) The displacement operator: D̂(α) = eαâ†−ᾱâ = e−|α |2/2eαâ†e−ᾱâ,
where α ∈ C and z̄ is the complex conjugate of z.

In this work, we will refer to q̂, p̂ as the position and momentum
operators (or “quadratures”), however, there may be no connec-
tion to such physical notions, as we have not fixed ourselves to
any particular system (for example, in the theory of superconduc-
tivity, these are the flux and charge operators, respectively [35]).
Indeed, the framework we are presenting is quite general and
applies to any infinite-dimensional quantum system. The choice
of basis is also not particularly important, as we can always
perform a unitary rotation on the basis |n⟩ → Û |n⟩ and define
our operators with respect to this, â → ÛâÛ†, etc. (though in
practice, often there will be a “canonical” choice, coming from
the physics). It is also worth noting, some conventions differ in
q̂, p̂, with common choices replacing the denominator (2) by

√
2

or 1.
These operators have other remarkable properties. Namely, it

is easy to show they admit a non-trivial commutation relation
[q̂, p̂] = i/2 (where the right-hand side has an implicit identity
operator). It is further possible to show these operators have a
continuous and real spectra [36], i.e.,

q̂|q⟩ = q|q⟩; p̂|p⟩ = p|p⟩,

where q, p ∈ R. It is important to observe that, while |q⟩, |p⟩ are
often treated as idealized quantum states (and approximations
can be made that are arbitrarily close), they are in fact not
legitimate quantum states; in particular, the wavefunction is a
delta function and not square integrable, ⟨q|q′⟩ = δ(q − q′).

This brings our attention to the displacement operator, D̂(α).
This can be used to construct an uncountably infinite family
of quantum states, known as coherent states. In particular, by
starting at the so-called vacuum state |0⟩ (the Fock state of 0
photons) and applying the displacement operator, one arrives at
the coherent state

|α⟩ := D̂(α)|0⟩ = e−|α |2/2eαâ† |0⟩ = e−|α |2/2
∞∑︂

n=0

αn

√
n!
|n⟩. (1)

Note, the Fock state |0⟩ is also a coherent state (i.e., the one with
α = 0), though this is not true for any other Fock state n>0 [it
should be clear from the context and notation (e.g., Latin versus
Greek symbols) when we are referring to a Fock or coherent
state in this work]. It is easy to check that Eq. (1) defines a gen-
uine normalized quantum state, with expected photon number
⟨α |n̂|α⟩ = |α |2.

Coherent states themselves have several useful and interesting
properties. First, they form a basis over the Hilbert space

1
π

∫
dα |α⟩⟨α | = I, (2)

and, as such, any state can be represented as

|ψ⟩ =
1
π

∫
dαψ(ᾱ)|α⟩, (3)

where the integral is evaluated over the plane, dα =
dRe(α)dIm(α), and ψ(ᾱ) = ⟨α |ψ⟩ [37]. Unlike Fock states,
coherent states form an uncountable, overcomplete basis for the
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Hilbert space H∞ and have the following inner product formula:

⟨α |β⟩ = e− 1
2 |α−β |

2 e−iIm(αβ̄). (4)

Coherent states are also the eigenstates of the annihilation oper-
ator: â|α⟩ = α |α⟩. Experimentally, the value α of a coherent
state can be determined by “homodyne” measurement, i.e.,
measuring the position/momentum operators: ⟨α |q̂|α⟩ = Re(α),
⟨α |p̂|α⟩ = Im(α).

Coherent states are often referred to as the “most classical”
states of a CV system [34]. This is because they minimize
the uncertainty relations for both quadratures, q̂, p̂, with equal
variance in either observable. Squeezed states, however, also
minimize the uncertainty relation, while not equalizing the vari-
ance of each observable. For example, one could minimize the
position uncertainty at the cost of increasing the momentum
uncertainty. Define the “squeeze” operator as [38]

Ŝ(ζ) := exp
[︃
1
2

(︂
ζ â2 − ζ â†2

)︂]︃
=

1
√

cosh r
exp

[︃
−

1
2

eiφ tanh(r)â†2

]︃
× exp [− ln(cosh(r))n̂] exp

[︃
1
2

e−iφ tanh(r)â2

]︃
,

(5)
where ζ = reiφ is a complex number known as the squeeze
parameter, with 0 ≤ r<∞ and 0 ≤ θ<2π. We will refer to
|ζ⟩ := Ŝ(ζ)|0⟩ as squeezed vacuum states, although one can
also consider squeezing other coherent states instead of the
vacuum (we will reserve the symbol ζ to denote squeezed
states). Any arbitrary pure single-mode Gaussian state |ψ⟩ can
be obtained by displacing a squeezed vacuum state, or squeezing
a coherent state, i.e., |ψ⟩ = D̂(α)Ŝ(ζ)|0⟩ = Ŝ(ζ)D̂(γ)|0⟩, where
γ = α cosh r + αeiφ sinh r.

Before delving into more details, it is worth listing some
useful identities involving displacement and squeeze operators,
and their canonical transformations. The displacement operators
are unitary and form a one-parameter family,

D̂(α)D̂†(α) = I = D̂†(α)D̂(α),

D̂(α)D̂(β) = eiIm(αβ)D̂(α + β).
(6)

Moreover, they displace the annihilation and creation operators
as

D̂†(α)âD̂(α) = â + α = D̂(−α)âD̂†(−α),
D̂†(α)â†D̂(α) = â† + α = D̂(−α)â†D̂†(−α).

(7)

By unitarity, this generalizes to D̂†(α)ânD̂(α) = (â + α)n and
D̂†(α)â†nD̂(α) = (â† + ᾱ)n.

Similarly, the squeeze operator is unitary,

Ŝ(ζ)Ŝ†(ζ) = I = Ŝ†(ζ)Ŝ(ζ), (8)

and they transform the annihilation and creation operators as
(hyperbolic rotations)

Ŝ†(ζ)âŜ(ζ) = â cosh(r) − â†eiφ sinh(r),
Ŝ†(ζ)â†Ŝ(ζ) = â† cosh(r) − âe−iφ sinh(r).

(9)

The squeeze operator does not commute with the displacement,
but rather has an interesting (braiding type) relation,

D̂(α)Ŝ(ζ) = Ŝ(ζ)D̂(γ), (10)

where γ = α cosh r + αeiφ sinh r [38].

2.2. QPD Simulation

Central to the discussion of optics simulation is the Wigner
function, which provides a phase space formalism for infinite-
dimensional quantum systems. Every state ρ of m modes has
an associated Wigner function, W : Cm → R, which is informa-
tionally equivalent to the state. For a single-mode state ρ, the
Wigner function is defined as [39]

W(α) =
1
π2

∫
dβeβ̄α−βᾱTr[D̂(β)ρ]. (11)

This can be generalized to multi-mode states easily, see, e.g.,
Ref. [36] and Supplement 1B for more information. Through
this phase space formalism, evolution dynamics, expectation
values, and measurement outcomes can be computed from the
Wigner function. The Wigner function of a state defines a quasi-
probability distribution (QPD), since it is normalized in the
sense

∫
dαW(α) = Tr[ρ], but W can attain negative values in

general.
The Wigner function for a coherent state |β⟩ is a Gaussian:

W|β⟩(α) =
2
π

e−2|β−α |2 . (12)

In fact, coherent states are themselves part of a larger family
known as Gaussian states. By virtue of Hudson’s theorem, a
pure state is “Gaussian” (has a Gaussian Wigner function) if
and only if its Wigner function is non-negative [36]. As a result,
Gaussian states can be classically simulated efficiently [18,19].
While we will not go into details here (the interested reader
can see Supplement 1A and provided references), it suffices
to mention that the positivity of the Wigner function allows
one to treat it as a bona fide probability distribution, for which
classical random sampling algorithms can be employed to out-
put measurement statistics efficiently, polynomially scaling in
the number of modes (provided the measurements are also
Gaussian—see below).

Gaussian operations (including measurements) are defined
as those which map Gaussian states to Gaussian states, which
can be implemented efficiently, in time O(poly(m)) for m modes
[40]. This is achieved by representing the state by its Wigner
function, which for pure Gaussian states, is a Gaussian func-
tion, thus depending only on O(m2) numbers to specify the first
two moments of the distribution (means and variances of the
quadratures). Gaussian operations include displacement opera-
tors, beam splitters, phase shifts, as well as measurements of the
position or momentum operators (homodyne) [41], or measuring
in the coherent state basis (heterodyne).

We can see an example where QPD positivity does not hold.
The simplest case, perhaps, is a cat state, which is a normalized
state of the form |ψ±⟩ = c(|α⟩ ± | − α⟩), where the + (−) sign is
often called an even (odd) cat state, due to the fact that in the Fock
basis, it only contains even (odd) photon numbers. Due to the
non-orthogonality, the normalization condition ⟨ψ± |ψ±⟩ = 1 is
non-trivial, from computing overlaps via Eq. (4): 2|c|2 = 1/(1 ±

e−2|α |2 ). In Supplement 1B we show that the Wigner function for
an off-diagonal term |α⟩⟨β| is

W|α⟩⟨β |(κ) = eiφα,β (κ)W| 1
2 (α+β)⟩

(κ). (13)

That is, it is the Wigner function for the coherent state | 1
2 (α + β)⟩

[of the form in Eq. (12)], multiplied by a κ dependent phase
factor. For a cat state |ψ±⟩, taking the normalization c = |c|, the
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Fig. 1. Wigner function for even cat state. The Wigner function
evaluated at α = αr + iαi for a normalized even cat state |2 + 2j⟩ +
| − 2 − 2j⟩.

Wigner function is therefore

W±(κ) = |c|2(W|α⟩(κ) +W|−α⟩(κ) ± 2W|0⟩(κ) cos[ϕα,−α(κ)]),
(14)

where ϕα,−α(κ) = 4(κrαi − κiαr), with κr = Re(κ) etc. Since the
first two terms in Eq. (14) are non-negative, all negativity is
related to the phase ϕ. In the limit of large |α |, the Wigner
function is effectively the sum of three independent functions;
Gaussians at±α, and a kind of modulated Gaussian at the origin.
This is shown in Fig. 1, where the central oscillations (from the
cosine term) are clearly observed. By Eq. (13), this negativity
is due entirely to the off-diagonal “coherences” in the density
matrix, |α⟩⟨β |. Reference [42] provides a more general result of
this discussion, allowing one to compute the Wigner function
for “off-diagonal” Gaussian states.

We also briefly mention for completeness that the theory of
efficient simulation can be generalized beyond the Wigner func-
tion, for the Wigner function is just one QPD in a continuum
[43]. In all of these cases, the efficient QPD simulation is only
possible when the relevant QPDs (states, operators, measure-
ments) represent a genuine probability distribution, otherwise a
sign problem of sorts is present, rendering the efficient classical
simulation by these means, in general, infeasible. Indeed, QPD
negativity is often considered a quantum resource and, as dis-
cussed in more detail in Supplement 1A, the classical simulation
complexity can be shown to scale exponentially in the number n
of non-Gaussian initial states, N 2n, where N =

∫
dα |W(α)| ≥ 1

measures the amount of negativity (N = 1 if and only if the
Wigner function is non-negative).

2.2.1. Linear Combination of Gaussians

References [42,44] generalize the discussion above to allow sim-
ulations where the state is represented as a linear combination of
Gaussian Wigner functions, Wρ(α) =

∑︁
g cgWg(α). In particular,

it is demonstrated in Ref. [42] how to represent many states of
interest in this framework, including GKP and Fock states, the
latter of which can describe |n⟩ with n + 1 Gaussian Wigner
functions (to arbitrary accuracy). Update rules for Gaussian
operations are given in [44], and non-Gaussian measurements
can be performed by representing the measurement outcome
as a linear combination of Gaussians, meaning that (Gaussian)
Boson sampling can be simulated with time complexity scaling
as [O(2n)] O(4n), for n photons in the output.

2.3. Stellar Rank

States in the Hilbert space can be constructed using the stellar
representation [45,46]. In particular, every single-mode state
|ψ⟩ =

∑︁∞

n=0 ψn |n⟩ has an associated stellar function

Fψ(α) = e 1
2 |α |

2
⟨ᾱ |ψ⟩ =

∞∑︂
n=0

ψn
αn

√
n!

, (15)

which has the property Fψ(â†)|0⟩ = |ψ⟩. The stellar rank r(ψ)
of a state is defined as the number of zeroes (counted with
multiplicity) of Fψ (the stellar function is non-zero analytic on
the complex plane), which is related to zeroes of the Husimi
Q-function, Qψ(α) = e−|α |2 |Fψ(ᾱ)|

2/π. For coherent states (and
Gaussian states in general), the stellar rank is 0, whereas a state
of at most n photons has stellar rank n. A remarkable result from
Ref. [47] is that any single-mode state with finite stellar rank r,
where the roots of the stellar function are { β̄i}

r
i=1, can be written

as

|ψ⟩ =
1

√
N

[︄
r∏︂

i=1

D̂(βi)â†D̂†(βi)

]︄
|Gψ⟩, (16)

where N is for normalization and |Gψ⟩ = Ŝ(ζψ)|αψ⟩ a Gaussian
state.

An additional and equally remarkable result is that the clas-
sical simulation complexity is intimately related to the stellar
rank [48]. In particular, a Fock state with stellar rank r can be
simulated under Gaussian operations/measurements with com-
plexity O(r32r + poly(m)), for m modes. Note for an initial state
of n photons (e.g., |1⟩⊗n), the stellar rank is r = n, as the stellar
rank is additive under tensor products for pure states.

If one additionally wants to perform a measurement in a non-
Gaussian basis (such as the Fock basis), this can be done at an
additional cost related to the stellar rank of the output measure-
ment, r = rψ +

∑︁m
k=1 rk, where rk is the stellar rank for a particular

output result in the kth mode, and rψ the stellar rank of the initial
state [49]. For an n photon simulation (such as Boson sampling),
r = 2n, as the input and output each have rank n.

2.4. Direct Fock State Simulation of Linear Optics

To simulate systems of strictly finite photon number, there exists
another, more “direct” approach, by simulating in the Fock basis.
Simulating Fock states is notoriously tricky, in fact, this forms
the basis for the classical hardness of Boson sampling [30]. The
general setup of interest in the present work is that of linear
optics, where n Fock states are injected over m spatial modes
(which are physical, e.g., fiber optics or waveguides). That is,
the initial state is of the form |n1, n2, . . . , nn⟩|0⟩⊗(m−n). The typical
use case is for single-photon states, i.e., ni = 1. Linear opti-
cal (LO) operations—beam splitters and phase shifts—are then
applied between and on these spatial modes, after which Fock
basis measurements are performed. The best classical algorithms
known for computing single amplitudes [30,50] and outputting
measurement results [31] run in time (space) O(n2n) [O(m)] for
n single-photon inputs, based on calculations of the permanent
(or slightly better in some cases [32]). Full Fock state simulation
of LO is however much more expensive in general, due to the
size of the Hilbert space; for n photons distributed among m
modes, the dimension is

dn,m =

(︃
n + m − 1

m − 1

)︃
=

(︃
n + m − 1

n

)︃
, (17)

https://doi.org/10.6084/m9.figshare.24645414
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which can be significantly larger than 2n.
A general LO transformation is generated by a “bilinear”

Hamiltonian, of the form

Ĥ =
m∑︂

i,j=1

hi,jâ†

i âj = Ĥ†, (18)

where the resulting unitary, Û = eiθĤ , has the property that it pre-
serves the photon number and therefore maps creation operators
to a linear combination of creation operators [51]:

â†

i → Ûâ†

i Û
† =

m∑︂
j=1

uj,iâ†

j . (19)

Here u is an m × m unitary matrix, often called the “transfer
matrix,” describing the Heisenberg evolution of the operator
[52]. That is, this tells us how a single photon propagates through
an LO circuit. It is worth mentioning it is efficient, O((N +
m)m), to construct the transfer matrix u of an entire LO circuit
composed of N single- or two-mode components (e.g., phase
shifts, beam splitters).

Since such transformations preserve photon number, the evo-
lution of a state can be described by evolving its creation
operators:

Û |n1, . . . , nm⟩ =
1

√
N

Û

(︄
n∏︂

i=1

â†

mi

)︄
Û†Û |0, . . . , 0⟩

=
1

√
N

n∏︂
i=1

(︂
Ûâ†

mi
Û†

)︂
|0, . . . , 0⟩.

(20)

Here, in the first step, we write each |ni⟩ =
1√
ni!
(â†)ni |0⟩ and

we inserted the identity operator Û†Û (N represents the nor-
malization of the n =

∑︁
i ni photon state and â†

mi
creates a

photon in the mith mode). Then using the form of Ĥ, we
note Û |0, . . . , 0⟩ = |0, . . . , 0⟩ and we again insert the identity
between each creation operator in the product to arrive at the
final form. In particular then, the output can be computed by
repeatedly applying Eq. (19) on the operator representation:

n∏︂
i=1

â†

mi
→

n∏︂
i=1

(︄
m∑︂

j=1

uj,mi â
†

j

)︄
. (21)

By multiplying together all of these size m polynomials (com-
puting all Fock basis amplitudes), in the worst case, results in
dn,m complex amplitudes to store in memory. Since at step i in the
above multiplication the current dimension is at most di,m, and
this “state” is then multiplied by m terms, the worst case time
complexity for computing the output is m

∑︁n−1
i=1 di,m = O(ndn,m)

[the worst case memory requirements are O(dn,m)]. Sampling
from the distribution therefore has a time complexity also scaling
as O(ndn,m).

Of course, in systems with symmetry, not every mode will
be populated, and the actual cost can be significantly less (the
simulation cost is linear in the number of Fock states with non-
zero amplitude). One can review Ref. [53] for a more detailed
exposé on the current state of the art for Fock simulation.

In the next section, we will outline a simulation approach
using coherent states, where the simulation cost can be much
better than the full Fock dimension, even if all Fock states are
populated. In particular, while the simulation cost, in the worse

case, is exponential in the number of photons, it is only quadratic
in the number of modes.

3. SIMULATION BY COHERENT STATE RANK
Here we outline a general strategy for simulating infinite-
dimensional systems using a finite rank decomposition over
coherent states, i.e., states of the form

∑︁k
i=1 ci |α

(1)
i , . . . ,α(m)

i ⟩ for m
modes, where each |α(j)

i ⟩ is a coherent state, and k is the “coher-
ent rank.” In general, we will allow for such a decomposition to
be approximate, in the following sense.

Definition 1. The “approximate coherent rank” of a state |ψ⟩
is the smallest integer k such that for any ϵ>0, there exists a
coherent rank k state |ψ̃⟩ where |⟨ψ |ψ̃⟩|2>1 − ϵ .

With such a representation, the memory requirements are sim-
ply from storing k(m + 1) complex numbers, i.e., each of the ci,
and theα(j)

i . Overall, we follow a similar approach as in finite rank
stabilizer simulations, see, e.g., [8]. In particular, we first show
how to decompose Fock states into an approximate finite rank
coherent state representation. We then discuss operations that
are “free” within this approach, i.e., those that do not increase
the rank, and can be applied in time O(k). Following this, we
consider “resourceful” operations (that increase the rank), and
then various methods to perform Fock basis measurements.

We will see, in many situations, this will outperform the direct
Fock evolution [Eq. (21)], potentially exponentially so, as the
time complexity for computing amplitudes scales similarly as
methods relying upon the permanent.

3.1. Fock Basis Decomposition

To simulate a Fock state using coherent states, we must first out-
line a strategy for converting a (possibly multi-mode) Fock state
to a coherent state superposition. This relies upon the following
theorem.

Theorem 1. A single-mode state in the Fock basis containing
at most N photons, |ψ⟩ =

∑︁N
n=0 an |n⟩, has approximate coherent

rank at most N + 1. One explicit construction for this is

|ψ̃⟩ =
1

√
N

N∑︂
k=0

ck |ϵe2π ik/(N+1)⟩,

ck =
eϵ 2/2

N + 1

N∑︂
n=0

√
n!

an

ϵ n
e−2π ink/(N+1),

(22)

where the normalization factor N = 1 + O(ϵ 2(N+1)/(N + 1)!)
determines the fidelity |⟨ψ |ψ̃⟩|2 = 1/N and ϵ ∈ R is a free
parameter.

Proof. We show this by construction. Consider the target state
|ψ⟩ =

∑︁N
n=0 an |n⟩, where

∑︁
n |an |

2 = 1 (the protocol can also be
applied to unnormalized “states”—one can always first nor-
malize it and later multiply by the inverse—but for ease of
exposition, we assume it is normalized here). Using Eq. (1), we
wish to satisfy the relations

an =

N∑︂
k=0

cke−
1
2 |αk |

2 αn
k

√
n!

for n = 0, . . . , N, where the approximate state is |ψ̃⟩ =∑︁N
k=0 ck |αk⟩. We can achieve this by Fourier analysis. We simply

posit αk = ϵe2π ik/(N+1), where for now, ϵ ∈ R is a free param-
eter (in practice, ϵ could be complex, though it would not
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meaningfully change anything). With this, the equations become
N∑︂

k=0

cke2π ink/(N+1) = e 1
2 ϵ

2 an

√
n!

ϵ n
.

Note that this can be solved by setting

ck =
eϵ 2/2

N + 1

N∑︂
n=0

√
n!

an

ϵ n
e−2π ink/(N+1), (23)

using the properties of the roots of unity:
n−1∑︂
k=0

e2π imk/n =

{︃
n m/n ∈ N,
0 otherwise. (24)

With this, Eq. (23) will exactly reproduce the amplitudes on the
Fock states |0⟩, . . . , |N⟩; however, for this to be of use, we must
bound the error (e.g., the infidelity of the target state with respect
to the constructed state). One can compute the amplitude on the
next few Fock states in the expansion of |ψ̃⟩:

⟨N + m|ψ̃⟩ = e−ϵ 2/2
N∑︂

k=0

ck
ϵN+m√︁

(N + m)!
e2π ik(N+m)/(N+1)

= ϵN+1am−1

√︄
(m − 1)!
(N + m)!

,

(25)

where here we restrict, for simplicity, m = 1, . . . , N + 1 (for
m>N + 1, a similar result holds, but we would need to work
modulo N + 1). Here the last step simply inserts the sum over n
from Eq. (23), and using Eq. (24), it picks out n = m − 1 in the
sum. To compute the infidelity with respect to the target state,
we must first normalize |ψ̃⟩, which we do by noting the norm
squared is

⟨ψ̃ |ψ̃⟩ = 1 + O
(︃
ϵ 2(N+1)

(N + 1)!

)︃
, (26)

by the above result (the “1” comes simply from the fact the
target state is normalized and the approximation perfectly over-
laps on those amplitudes, by construction). By appropriately
normalizing |ψ̃⟩, we see, for small enough ϵ :

1 − |⟨ψ |ψ̃⟩|2 = O
(︃
ϵ 2(N+1)

(N + 1)!

)︃
. (27)

This completes the proof, as ϵ is a free parameter that can be
used to tune the error arbitrarily small. □

This leads us to the following corollary.
Corollary 1. The state

|Ñ⟩ =
1

√
N

√
N!

N + 1
eϵ 2/2

ϵN

N∑︂
k=0

e−2π ikN/(N+1) |ϵe2π ik/(N+1)⟩ (28)

approximates the Fock state |N⟩ with fidelity

|⟨N |Ñ⟩|2 =
1
N
= 1 − O

(︃
N!

(2N + 1)!
ϵ 2(N+1)

)︃
,

where, for normalization, N = N!
∑︁∞

k=0
ϵ 2k(N+1)

(k(N+1)+N)! .
Proof. This follows immediately from direct application of

Eq. (22). □
We can observe that for a single-photon state, N = 1, this is

an odd (normalized) cat state of the form |ϵ⟩ − | − ϵ⟩, where
one can see by inspection that this indeed tends to |1⟩ as ϵ → 0

(all even Fock terms are 0 by construction, and all weight will
concentrate on the |1⟩ state for small enough ϵ). For higher
photon number Fock states, this idea generalizes; we see that |Ñ⟩

only has non-zero amplitude on |N⟩, |2N + 1⟩, |3N + 2⟩, . . . .
After submitting the first version of this manuscript, we

became aware that similar results as Corollary 1 have previ-
ously been observed. For example, in Ref. [54], a projector onto
select Fock states is constructed as a sum of N + 1 phase shifts,∑︁N

k=0 e(n̂−N)2π ik/(N+1), which when acting on a coherent state |ϵ⟩
gives Eq. (28), upon normalization. In addition, decompositions
of this type were also used in Refs. [55,56].

This shows that to approximate a Fock state of the form
|n1, n1, . . . , nm⟩ results in a superposition of

∏︁m
i=1(ni + 1) coher-

ent states. For example, the initial state for Boson sampling,
|1⟩⊗n |0⟩⊗(m−n), results in a superposition of 2n coherent states.
We will see that under certain “free operations” that do not
increase the rank (Section 3.2), this can be much more efficient
than storing each individual Fock amplitude, as was discussed
in Section 2.4. Moreover, a simulation of a system with initial
state |n⟩|0⟩⊗(m−1) is only a superposition of n + 1 coherent states.
Thus, under free operations, such a system is efficient to simu-
late, whereas in the Fock basis, this could result in dn,m [Eq. (17)]
amplitudes to store.

We also mention here that Theorem 1 is technically only an
upper bound on the approximate coherent rank, since we do not
rule out more efficient representations (i.e., the optimality of
Theorem 1 is an open question). It is however easy to verify for
the Fock state |1⟩, the approximate coherent rank is exactly 2.

While the above construction was presented for finite Fock
state representations (i.e., up to N photons), it can, in certain
cases, be used to approximate states with support over the entire
Hilbert space. As a pertinent example, we apply this to squeezed
vacuum states |ζ⟩ (as used in Gaussian Boson sampling [57]),
which by Eq. (5) is

|ζ⟩ = Ŝ(ζ)|0⟩ =
1

√
cosh r

e− 1
2 eiφ tanh(r)â†2

|0⟩

=
1

√
cosh r

∞∑︂
n=0

(−eiφ tanh r)n
√︁
(2n)!
2nn!

|2n⟩,
(29)

where ζ = reiφ . Since the amplitudes tend to zero as n grows
(|⟨2n + 2|ζ⟩|/|⟨2n|ζ⟩| = tanh r

√︁
(2n + 1)/(2n + 2)<1), it is pos-

sible to approximate such a state to arbitrary accuracy, by only
taking the first N terms for some N = N(r). In Fig. 2, we show
such an approximation. Indeed, to achieve a particular target
fidelity depends strongly on the squeezing parameter r. Nev-
ertheless, this demonstrates such a procedure can be used in
principle. Note, the approximation we use here does not follow
Eq. (22) precisely (though the general idea is the same), but a
related form to take advantage of the structure of Eq. (29), as
shown in Supplement 1C.

Lastly, we show we can rigorously upper bound the coherent
state rank, in particular, we have the following proposition.

Proposition 1. A single-mode state |ψ⟩ with finite stellar
rank r,

|ψ⟩ =
1

√
N

[︄
r∏︂

i=1

D̂(βi)â†D̂†(βi)

]︄
|Gψ⟩, (30)

has approximate coherent rank at most k(r + 1), where k is the
coherent rank of |Gψ⟩.

https://doi.org/10.6084/m9.figshare.24645414
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Fig. 2. Squeezed vacuum state approximation. Infidelity of
approximate squeezed vacuum state | ζ̃⟩ with respect to refer-
ence target |ζ⟩ of Eq. (29) (note, here we set ϕ = 0 in ζ = reiφ).
The approximation | ζ̃⟩ is a superposition of N coherent states as
described in Supplement 1C.

Proof. Using Eq. (7), we have

r∏︂
j=1

D̂(βj)â†D̂†(βj) =

r∏︂
j=1

(︂
â† − βj

)︂
. (31)

Therefore, the operator
∏︁r

j=1 D̂(βj)â†D̂†(βj) contains at most(︁
a†

)︁ r in the expansion and can be written in the general form∑︁r
l=0 bl

(︁
â†

)︁ l. Let |Gψ⟩ be a pure state with coherent rank k, that is,
|Gψ⟩ =

∑︁k
j=1 cj |αj⟩. Then, Corollary 2 below shows that applying

a resourceful operation of the form
∑︁r

l=0 bl
(︁
â†

)︁ l on a coherent
rank-k state increases its approximate coherent rank to k(r + 1).

It is important to note that in the stellar rank formalism, the
state |Gψ⟩ is a general Gaussian state and therefore, it may have
nontrivial squeezing ζ ≠ 0, which can result in an arbitrarily
large coherent rank. However, for ζ = O(1), by keeping terms up
to nth order in the Taylor expansion of Ŝ(ζ), we can approximate
|ζ⟩ with approximate coherent rank 2n + 1.

3.2. Free Operations

We consider the class of operations that do not increase the rank,
k, for states of the form

∑︁k
i=1 ci |α

(1)
i , . . . ,α(m)

i ⟩. Generally speak-
ing, such operations are those that map a tensor product of m
coherent states into another tensor product of m coherent states.
In particular, such operations generate no mode entanglement
when acting on coherent states, which contains the set of linear
optical operations. In line with the resource theory literature, we
call such operations “free operations.”

The first obvious example is a single-mode displacement
operator, which to update the state, takes time O(k), simply by
updating the relevant single-mode coherent state for each term
in the sum, as well as the amplitudes: D̂(β)|α⟩ = eiIm(ᾱβ) |α + β⟩.

Another obvious and relevant example is a single-mode phase
shift, as used in linear optics, P̂(ϕ) = eiφn̂. It is easy to see such
an operation acts as P̂(ϕ)|α⟩ = |eiφα⟩.

In fact, the result can be generalized to that of all LO
operations.

Theorem 2. All linear optical unitary transformations Û,
with respective transfer matrix u [Eq. (19)], are free. The time

complexity for updating a rank k state is O(kℓ2), where Û(u)
acts non-trivially on ℓ ≤ m modes.

Proof. Consider the action of such a unitary on |α1, . . . ,αm⟩:

Û |α1, . . . ,αm⟩ = Û
m∏︂

i=1

D̂i(αi)|0, . . . , 0⟩

=

m∏︂
i=1

(︂
ÛD̂i(αi)Û†

)︂
Û |0, . . . , 0⟩

=

m∏︂
i=1

(︂
ÛD̂i(αi)Û†

)︂
|0, . . . , 0⟩,

where we insert the identity ÛÛ† = I between each displace-
ment operator (D̂i only acting non-trivially on mode i), and
the last step uses that for LO unitaries, Û |0, . . . , 0⟩ = |0, . . . , 0⟩
(conservation of particle number).

Using that ÛeX̂Û† = eÛX̂Û† by unitarity, we can write

ÛD̂i(α)Û† = Ûeαâ†i −ᾱâi Û† = eαÛâ†i Û†−ᾱÛâiÛ† .

Now by the linear property, Eq. (19), we have

Ûâ†

i Û
† =

m∑︂
j=1

uj,iâ†

j ; ÛâiÛ† =

m∑︂
j=1

ūj,iâj,

and therefore

ÛD̂i(α)Û† = exp

[︄
m∑︂

j=1

(αuj,iâ†

j − ᾱūj,iâj)

]︄
=

m∏︂
j=1

D̂j(αuj,i).

That is, a single-mode displacement operator is mapped to a
multi-mode displacement operator, and combining these results,
we see the unitary Û maps a multi-mode coherent state to a
multi-mode coherent state:

Û |α1, . . . ,αm⟩ =

m∏︂
i,j=1

D̂j(αiuj,i)|0, . . . , 0⟩ =
m⨂︂

j=1

|︁|︁|︁|︁|︁ m∑︂
i=1

αiuj,i

⟩︄
.

(32)
The last step uses that a product of displacement operators is
also a displacement operator [Eq. (6)], where the argument is
summed. In general, this generates a phase factor, but by unitarity
of u, it is easy to verify this is 0 here; the phase is composed
entirely of terms of the form αiᾱj

∑︁
k uk,iūk,j = 0 (with i ≠ j).

For LO transformations therefore, the update can be per-
formed by simple matrix-vector multiplication,

|α′

1, . . . ,α′

m⟩ = Û |α1, . . . ,αm⟩;
⎛⎜⎜⎝
α′

1
...
α′

m

⎞⎟⎟⎠ = u
⎛⎜⎜⎝
α1
...
αm

⎞⎟⎟⎠ , (33)

which in the (worst) case where u acts non-trivially over all
modes, has computational cost O(m2).

The above shows the coherent rank of a state is unchanged by
any LO operation. Further, if Û only acts non-trivially on ℓ ≤ m
modes, then the relevant submatrix of u has size ℓ × ℓ, resulting
in computational cost to update a rank k state, O(kℓ2). □

We can use Eq. (33) to show for a beam splitter described by
a unitary B̂ with transfer matrix u,

B̂(θ, ϕ) = e θ
2 (â† b̂eiφ−âb̂†e−iφ ), u =

(︃
t reiφ

−re−iφ t

)︃
, (34)

https://doi.org/10.6084/m9.figshare.24645414
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Fig. 3. Example of a free circuit and its inverse. The application of only linear optical (LO) unitaries, displacements, and annihilation
operators are free, meaning the coherent rank of |ψ⟩ is unchanged under such a circuit (left). Similarly, if one has a circuit of only LO unitaries,
displacements and creation operators (right), the output probabilities can be computed with the same cost as the time-reversed (free) circuit.
Circuits with both creation and annihilation operators however incur additional cost for implementing the non-free operations.

where t = cos θ

2 , r = sin θ

2 , that

B̂(θ, ϕ)|α, β⟩ = |tα + reiφ β, tβ − re−iφα⟩. (35)

Theorem 2 shows that all linear optical operations are free within
the framework of coherent state rank simulation. In particular,
the time complexity to compute the final state (before measure-
ment) under a general Boson sampling type (random) circuit
of m modes and n photons is O(m22n), and space complexity
O(m2n). This generally will be much less costly than the full
simulation in the Fock basis (Section 2.4).

Lastly, while not a unitary operation, it is worth noting that,
essentially by definition, the annihilation operator is also free
(in fact, it is a free operation as opposed to a free unitary, since
it can consume resource, see Supplement 1F), as it just modifies
each complex amplitude ci → ciα

(j)
i , when applying âj (therefore

taking time O(k) to update the state). In addition, any function
f (â) can be similarly implemented (assuming it can be com-
puted classically in polynomial time). In general, the creation
operator is not free, as we will see below. However, noting that
⟨ϕ|â|ψ⟩ = ⟨ψ |â† |ϕ⟩, the simulation cost for computing output
amplitudes/probabilities in circuits composed of free unitaries
and only creation operators is equivalent to the time-reversed cir-
cuit containing entirely free (unitary and annihilation) operators.
See Fig. 3 for an example.

3.3. Resourceful Operations

Any operation that is not classed as free is “resourceful.” Such
an operation, when acting on a multi-mode coherent state will
generate a non-trivial superposition. One example is a single-
mode squeezing operator, Eq. (5), which when acting on the
(coherent) vacuum generates a squeezed vacuum state, Eq. (29),
and hence squeezing is not a free operation (see Supplement 1C
for one decomposition). Another example (though not unitary)
is the creation operator, â†, which is clearly not free. In fact, as
we will see below in Corollary 2, â† causes the rank of a state to
double. We can first make a definition analogous to Definition 1
at the operator level.

Definition 2. The (approximate) “operator coherent rank” for
an m-mode operator Â is ℓ if and only if Â|α⃗⟩ has (approximate)
coherent state rank at most ℓ, for all |α⃗⟩.

In other words, the action of an operator with coherent rank
ℓ on a coherent state results in a state of coherent rank at
most ℓ (and this is achieved for at least one coherent state).
One can readily observe that an operator with (approximate)
operator coherent rank ℓ can be implemented on a state with
(approximate) coherent rank k, resulting in a state of at most
(approximate) coherent rank kℓ.

An operator composed as a sum of displacements, Û =∑︁ℓ
i=1 aiD̂i(αi), has operator coherent rank at most ℓ, and sim-

ilarly for an operator represented in the coherent state basis,
Û =

∑︁ℓ
i,j=1 ai,j |αi⟩⟨βi |.

One potential construction for this is to use a similar Fourier
decomposition as in Theorem 1, but at the level of an oper-
ator. Consider an operator acting on at most N photons: Â =∑︁N

n,m=0 An,m |n⟩⟨m|. This could result, for example, from the trun-
cation of an operator to the maximum N photon subspace. Then
one can use the following proposition.

Proposition 2. The operator Â =
∑︁N

n,m=0 An,m |n⟩⟨m| in the Fock
basis up to N photons has approximate operator coherent rank
at most N + 1. One explicit representation is

˜̂A =
N∑︂

k,l=0

ck,l |ϵe2π ik/(N+1)⟩⟨ϵe2π il/(N+1) |,

ck,l =
e|ϵ |2

(N + 1)2
N∑︂

n,m=0

√
n!m!

An,m

ϵ n+m
e−2π i(kn−lm)/(N+1),

(36)

which is arbitrarily accurate for ϵ → 0.
Proof. This follows almost exactly that of Theorem 1. □
Such a decomposition can also be applied to multi-mode oper-

ators. One clear issue with such a method is that if N is large, the
state rank k will increase very quickly k → k(N + 1), meaning
very few operators in this form can be applied. Nevertheless, this
allows one, in principle, to achieve universality with displace-
ments and SNAP operations exp(iθn |n⟩⟨n|) = |n⟩⟨n|(eiθn − 1) + I
[58], which has approximate operator coherent rank at most
n + 2.

A second, perhaps more practical approach, is to recompute
each coherent state in the superposition to a desired accuracy
in the Fock basis, and then reexpress the state via Theorem 1.
For example, in the single-mode case, Û |ψ⟩ =

∑︁k
i=1 ciÛ |αi⟩, and

one can truncate each Û |αi⟩ =
∑︁

n≥0 an |n⟩ ≈
∑︁Ni

n=0 an |n⟩ to the Ni

photon subspace (to desired accuracy), which can be (approx-
imately) written as Ni + 1 coherent states. In this example, the
output state has coherent rank at most k +

∑︁k
i=1 Ni.

Lastly, we show some results pertaining to the implementa-
tion of creation operators. We will see a creation operator can
be implemented doubling the rank, or in general, an operator
composed of n such operators will increase the rank by a factor
of n + 1.

Theorem 3. Any single-mode operator composed of only
creation and annihilation operators, of the form Â :=∑︁p

i=1 bi
∏︁li

j=1(â†)ni,j (â)mi,j , where there are at most n creation oper-
ators in total for each term in the sum (i.e., n ≥

∑︁li
j=1 ni,j,∀i), has

approximate operator coherent rank at most n + 1.
Proof. Such an operator acts on a coherent state as

Â|α⟩ = ÂD̂(α)|0⟩ = D̂(α)D̂†(α)ÂD̂(α)|0⟩ =: D̂(α)Â′(α)|0⟩.

Now, from Eqs. (6) and (7), by repeatedly inserting the identity
operator D̂†(α)D̂(α), the operator Â′ can be written as

Â′(α) =

p∑︂
i=1

bi

li∏︂
j=1

(â† + ᾱ)ni,j (â + α)mi,j .

https://doi.org/10.6084/m9.figshare.24645414
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This shows that Â′ |0⟩ defines a (generally unnormalized) state
in the Fock basis containing at most n photons, i.e., it is of
the form Â′ |0⟩ =

∑︁n
i=0 ci |i⟩. Moreover, note that it is efficient

to compute the amplitudes ci (with worst case time scaling as
O(pn2)). By Theorem 1, such a state can be decomposed to have
approximate coherent rank (at most) n + 1. The result follows by
noting the final application of D̂(α) leaves the rank unchanged,
as displacements are free. □

This leads immediately to the following observations (we
also give an alternative proof of this in Supplement 1D using
post-selection).

Corollary 2. The operator â† has approximate operator
coherent rank 2 and an operator

∑︁n
l=0 bl(â†)l has approximate

operator coherent rank at most n + 1. The classical simulation
of photon-added coherent states therefore has a cost linear in
the number of photon additions.

Theorem 3 allows one to implement operators generated
by the creation/annihilation operators. For example, squeezing
operations [Eq. (5)] can be implemented to arbitrary accuracy by
expanding Ŝ(ζ) to order n [terms up to (ζ̄ â2 − ζ â†2)n], which will
increase the states coherent rank by a factor of at most 2n + 1.

In general, applying multiple resourceful operations in a cir-
cuit causes an exponential overhead for the classical simulation
complexity. For example, n independent applications of the cre-
ation operator (potentially on different modes) will generically
result in an O(2n) increase in the coherent state rank, by Corol-
lary 2. This is similar to the case of stabilizer/magic simulations,
where only a logarithmic number of T gates can be tolerated
[8]. Of course, in some situations, this can be improved upon
as demonstrated above, where (for example) applying n creation
operators sequentially on a single mode only increases the sim-
ulation cost linearly (instead of exponential) in n, meaning a
polynomial (instead of logarithmic) number can be applied.

3.4. Measurements

The last ingredient in the coherent state rank simulation
paradigm is that of measurements. Here we primarily consider
Fock basis measurements, but will also mention properties of
the coherent state basis measurement. There are several ways
in which to perform a measurement in this approach, each of
which has different pros and cons.

For consistency, we define an m mode state of rank k as before:
|ψ⟩ =

∑︁k
i=1 ci |α

(1)
i , . . . ,α(m)

i ⟩. This could correspond to the state
after evolving a Fock state through a linear optical network,
for example. We will see that computing the probability for a
particular Fock/coherent basis measurement can be achieved in a
time linear in the rank k, but for actually outputting measurement
results according to the desired distribution, there are additional
complications.

3.4.1. Computing Individual Amplitudes

Before discussing probabilistic measurement (sampling), we
first observe that the computation of individual amplitudes/
probabilities can be performed in time O(mk) by evaluating
the overlaps

⟨n1, . . . , nm |ψ⟩ =

k∑︂
i=1

ci

m∏︂
j=1

e− 1
2 |α

(j)
i |2 (α

(j)
i )nj√︁
nj!

⟨β1, . . . , βn |ψ⟩ =

k∑︂
i=1

ci

m∏︂
j=1

e− 1
2 |βj−α

(j)
i |2 e−iIm(βj ᾱ

(i)
i ),

(37)

where |ni⟩ is a Fock state of ni photons and |βi⟩ a coherent
state. That is, one can compute the probability of a particu-
lar Fock/coherent basis measurement result in time O(mk). The
computation of the above overlaps is equivalent to applying
free operations (annihilations or displacements, respectively)
on |ψ⟩, followed by projecting to the vacuum state. In fact,
the above can be generalized to computing the overlaps of
two arbitrary states generated by (say) LO unitaries Û, V̂ , e.g.,
⟨ϕ|ψ⟩ = ⟨0⃗|

∏︁
i âiV̂†Û

∏︁
j â†

j |0⃗⟩. Noting annihilation operators
are free, the computational cost to compute this overlap is
O(m2k) (Theorem 2), where k is the coherent rank of the ini-
tial state

∏︁
j â†

j |0⃗⟩ (we omit potential normalization factors for
simplicity).

We further note that certain output amplitudes can be
computed much more efficiently in the setting of Boson sam-
pling by simulating the time-reversed circuit. For example,
since ⟨n, 0, . . . , 0|Û |1, . . . , 1⟩ = ⟨1, . . . , 1|Û† |n, 0, . . . , 0⟩, and
the state |n, 0, . . . , 0⟩ has rank n + 1, the simulation time com-
plexity to compute this output amplitude is O(m2n), instead of
O(m22n) for the forward circuit. In general, the cost to compute
some particular transition amplitude is determined by which
of the input or output has the most efficient coherent rank
representation:⟨︄

0⃗

|︁|︁|︁|︁|︁
(︄∏︂

j∈Jout

âj

)︄
Û

(︄∏︂
i∈Iin

â†

i

)︄|︁|︁|︁|︁|︁ 0⃗
⟩︄
=

⟨︄
0⃗

|︁|︁|︁|︁|︁
(︄∏︂

i∈Iin

âi

)︄
Û†

(︄∏︂
j∈Jout

â†

j

)︄|︁|︁|︁|︁|︁ 0⃗
⟩︄
.

Moreover, projecting a state onto a partial measurement result
of p<m modes (without normalization), e.g., ⟨n1, . . . , np |ψ⟩ or
⟨β1, . . . , βp |ψ⟩, has time cost O(pk), given a rank k state (i.e.,
such an operation is “free”). Note however, computing the nor-
malization of the Fock projected state is, in general, not linear
in k (however, we will see coherent state projection can be nor-
malized with cost linear in k). First, we can note that since
coherent states are not orthogonal, the cost for computing the
norm of an m-mode rank-k “state,” by evaluating all overlaps
in ∥|ψ⟩∥2 = ⟨ψ |ψ⟩, has computational cost O(mk2). This can
be improved upon if the state is generated by a free unitary.
For example, if |ψ⟩ = Û

∏︁
i â†

i |0⃗⟩ is of rank k, where Û is a LO
unitary, then the norm squared of the projected state can be com-
puted as (up to trivial normalization factors from the creation
operators)

∥⟨n1, . . . , np |ψ⟩∥
2 =

⟨ψ |⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
⟨0⃗|

∏︂
i

âiÛ†

p∏︂
j=1

â†nj
j (|0⟩⟨0|)⊗p

p∏︂
ℓ=1

ânℓ
ℓ

|ψ⟩⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟
Û

∏︂
i

â†

i |0⃗⟩ .

(38)
Applying the operations from right to left will result in a state of
coherent rank k

∏︁p
j=1(nj + 1), the overhead coming from the cre-

ation operators (Corollary 2). Therefore, computing the above
overlap takes time O(m2k

∏︁p
j=1(nj + 1)). For small p, this is gen-

erally more efficient than the direct k2-scaling calculation, e.g.,
if p = 1, it is simply O(n1m2k). In the worst case however, it is
actually less efficient, for example, if all nj = 1, then the cost is
O(m2k2p). As such, we can generically upper bound the com-
plexity of evaluating the norm of the (m − p)-mode partially
Fock projected state as O((m − p)k2), by direct calculation of all
overlaps.

To calculate the equivalent conditional coherent basis normal-
ization of ⟨β1, . . . , βp |ψ⟩ via Eq. (38), one replaces the â†nj

j , ânℓ
ℓ

with displacement operators D̂(βj), D̂(−βℓ ), which as they are

https://doi.org/10.6084/m9.figshare.24645414
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free, the cost of computing this norm is linear in the rank,
O(m2k).

3.4.2. Metropolis Sampling Algorithm

For sake of an example, consider the case of interest being
Boson sampling-like simulations, with n single-photon inputs
in m modes. The coherent rank of such a state is k = 2n and
the Fock dimension is dn,m [Eq. (17)]. In the most “naive”
approach to outputting measurement samples from the desired
distribution, one can simply compute measurement probabili-
ties pn⃗ until some (random) threshold r<1 is reached,

∑︁
n⃗ pn⃗>r.

Although computing each individual measurement probability
is linear in k, O(mk), this procedure may require the evaluation
of O(dn,m) probabilities, i.e., resulting in overall time complex-
ity O(m2ndn,m). This can therefore be more costly (in time) than
doing the full Fock basis simulation, which scales as O(ndn,m)
for outputting measurement samples, as discussed in Section
2.4 [the memory overhead will still, in general, be better in the
coherent representation however, O(m2n) versus O(dn,m)].

We can improve upon this “naive” sampling by a heuristic
approach, using a Markov chain. This could also be applied to
the coherent state basis, though as it is a continuous distribution,
we focus on Fock measurements here for simplicity. Similar
methods have been proposed and used for Boson sampling [59]
and in stabilizer rank simulation [8]. We will outline a very
high level version of this type of algorithm as an example for
the reader, but mention that this can be implemented in many
different ways, each likely with different benefits and drawbacks.

The main idea is to set up a Markov chain, where each state
in the chain is a measurement outcome. One can propose new
outcomes and accept them with the appropriate probability. For
example, we have the following.

(1) Input: a rank-k m-mode state |ψ⟩.
(2) Initialization: pick a random Fock basis measurement

outcome n⃗ = (n1, . . . , nm) and compute Pn⃗ = |⟨n⃗|ψ⟩|2.
(3) Propose a new measurement outcome n⃗′ by local moves

from n⃗, and compute Pn⃗′ .
(4) Accept change with probability min{1, Pn⃗′/Pn⃗}.
(5) Repeat steps 3, 4 for T steps, where T is a user determined

“thermalization” time, and output the current state.

Some comments are in order. (i) In step 2, the ni should be
chosen to take reasonable values based on knowledge of the
simulation; if the simulation is of fixed photon number N, then
one should pick n⃗ such that

∑︁m
i=1 ni = N. (ii) Step 3 can of course

be implemented in a variety of manners. If one has a fixed pho-
ton number simulation, one can, for example, pick two random
modes, decrease the photon count in one of the modes by a
random amount (if possible), and in the other mode, commen-
surately increase the photon count. (iii) The “thermalization”
time T is a user chosen value, to allow the system to (hopefully)
reach equilibrium. This will depend on the output distribution
and, in principle, could be a bottleneck for the procedure (though
it depends strongly on the details of the system). (iv) The time
complexity for steps 2, 3 is O(mk), for computing the probability,
as discussed above. The total cost to output a single measurement
result is therefore O(Tmk).

While this method certainly can result in an efficient sampling
for practical cases of interest, it has the usual issues and suffers
from the same constraints as in most applications of Metropolis

sampling. We already briefly discussed the issue of the ther-
malization time above. Another issue worth addressing, as also
described in Ref. [8], is the Markov chain must be irreducible;
given two configurations (measurement results) with non-zero
probability, there needs to be a path between them, where the
path is defined by the type of updates in step 3 above. While in
random circuits (such as for Boson sampling) it is likely to have
this property (since all measurement results will likely have a
non-zero amplitude), in circuits with structure, many amplitudes
may be identically 0, leaving the possibility of disconnected
regions. Though this can be mitigated to some extent through
numerical techniques (dynamically increasing the search area,
random restarts, etc.), the Metropolis sampling approach may
not always be a feasible one.

3.4.3. Conditional Probability Sampling

Here we describe an approach to measurement using conditional
probabilities. As before, in principle, this could be applied to
the coherent state basis also, though the continuous nature adds
additional technical details. We will describe the procedure in
words.

Starting with mode 1, output the measurement result n1 with
probability P(1)

n1 = ∥⟨n1 |ψ⟩∥
2 (where ∥ϕ∥2 = ∥|ϕ⟩∥2 = ⟨ϕ|ϕ⟩). To

implement this, one can pick a random number r ∈ (0, 1), and
output n1 such that

∑︁n1
n=0 P(1)

n >r. Then, with the m − 1 mode (nor-
malized) state |ψ2,. . .,m⟩ =

1
∥⟨n1 |ψ⟩∥

⟨n1 |ψ⟩, one applies the same
algorithm to the next mode, outputting n2 with probability
∥⟨n2 |ψ2,. . .m⟩∥

2. Continue until all m modes have been measured.
The cost of this procedure to output result (n1, . . . , nm) is

O(
∑︁m

i=1 niNi), where Ni is the cost of computing the norm of the
projected state ⟨n1, . . . , ni |ψ⟩. As discussed in Section 3.4.1, the
worst case scaling for such a computation is O(mk2), meaning the
cost to output a single measurement sample is O(Nmk2), where
N =

∑︁
i ni is the total number of photons. The best or average

cases however may be significantly better than this, see Eq. (38).
In general though, this is a huge computational overhead, e.g.,
for single-photon inputs, k = 2n. (Note, in the case of coherent
basis measurements—heterodyne—the norm can be computed
in a time linear in k.)

There are however two possible ways to improve upon this.
First, since the overlap between coherent states decreases expo-
nentially in their separation, |⟨α |β⟩|2 = e−|α−β |2 , one may be
able to pick a representation where all states are approximately
orthogonal, in which case one can output a single measure-
ment sample of N photons in time O(Nk) [if the states in
the decomposition are approximately orthogonal, the norm
can be computed in time O(k)]. One example as to how
this can be achieved follows the Fourier decomposition in
Eq. (22). Consider approximating the Fock state |n⟩. Note one
can increase the error parameter ϵ (which decreases the over-
lap between states in the decomposition) and the expense of
increasing the rank of the state (e.g. take N>n terms, where
the amplitudes ai = δi,n for i = 0, . . . , N − 1). The parameter
ϵ does not, per se, have to be small, since the error goes as
N!ϵ 2N+1/(2N + 1)! and so can be compensated by increasing
N. This can allow one to construct a decomposition with a
greater number of terms, but where the coherent states in the
superposition are approximately orthonormal. Since unitarity
preserves the overlap of the initial states in the decomposition,
one only needs to guarantee the orthogonality in the initial states
construction.
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Fig. 4. Estimating the norm via Proposition 3. (A) We estimate the norm squared for a rank three unnormalized state 1
2 |2⟩ (using Corollary

1 with ϵ = 0.35), taking 750,000 samples per data point. (B) Numerical computation of the standard deviation from 750,000 samples, for
states of the form 1

2 |n⟩
⊗m, for n = 1, 2 in the legend (i.e., states with norm squared 1/4). We use Corollary 1 to write |n⟩⊗m as a superposition

of coherent states with rank (n + 1)m, where we use error parameter ϵ = 0.35. We also vary the sampling radius L. The straight lines are least
squares fits to the data in the form σ = ALcm, with c shown in the legend.

A second approach is to use a method of estimating the norm,
as demonstrated in Ref. [8], for a stabilizer rank decomposition.
This relies upon the following proposition.

Proposition 3. For sufficiently large L, the expected overlap
of coherent state |β1, . . . , βm⟩, where |βi |<L, with an m mode
(generally unnormalized) “state” |ψ⟩ =

∑︁k
i=1 ci |α

(1)
i , . . . ,α(m)

i ⟩ is

Eβ1 ,. . .,βm :|βi |<L |⟨β1, . . . , βm |ψ⟩|
2 ≈

1
L2m

∥ψ∥2.

Proof. We perform the calculation for a single mode (the result
generalizes straightforwardly). We wish to compute

Eβ:|β |<L |⟨β |ψ⟩|
2 =

1
πL2

∫
|β |<L

dβ |⟨β |ψ⟩|2,

where |ψ⟩ =
∑︁k

i=1 ci |αi⟩. Here, the 1/πL2 is for normalization of
the integral over the disk. Since the overlap |⟨β |αi⟩|

2 = e−|αi−β |
2

is exponentially small in the distance between the states on
the plane, if L is large enough, we can replace the integral by
an integral over the entire plane. To be more explicit, we are
making the approximation ⟨β |ψ⟩ ≈ 0 for |β |>L, which is in
effect a photon number cutoff. In this case, where the integral is
now over the entire plane, we see

Eβ:|β |<L |⟨β |ψ⟩|
2 ≈

1
πL2

∫
dβ⟨β |ψ⟩⟨ψ |β⟩ =

1
L2 Tr[|ψ⟩⟨ψ |] =

1
L2 ∥ψ∥

2,

which is the desired result for m = 1, where we used the identity
Tr[A] = 1

π

∫
dβ⟨β |A|β⟩. The approximation becomes arbitrarily

accurate for large enough L.
In the m mode case, we just get a product of integrals, and

since the trace distributes over tensor products Tr[A ⊗ B] =
Tr[A]Tr[B], the result is the same, but with normalization L2m.
□

Proposition 3 implies yet another method for computing the
norm linearly in the rank, in principle. In particular, since
each overlap squared |⟨β1, . . . , βm |ψ⟩|

2 costs O(mk) steps to
compute (as previously discussed), the cost for estimating the
norm is O(Tmk), where T is the number of random samples
required to estimate the norm to desired accuracy. Combining
this with the above description for conditional sampling, the
cost for outputting a single measurement sample of N photons
is O(NTmk).

Of course, there are some potential practical issues to address.
First, the choice of L is critical; if it is too small, the estimate

will not converge to the correct value, and if it is too large, the
number of samples T required will also be large. To pick L, one
could start with a small value and increase it until convergence,
but of course this costs additional resources. In Fig. 4(A), we
show an example of estimating the norm for a single-mode state
using Proposition 3. We see in this case, L ≈ 3 suffices to get
within 1% accuracy of the true value.

Another obvious issue is the number of samples required.
First, let us define the random variable X = L2m |⟨β⃗ |ψ⟩|2, where
| β⃗⟩ = |β1, . . . , βm⟩. By Proposition 3, we know ⟨X⟩β → ∥ψ∥2 for
a large enough sampling radius L. The variance, for sufficiently
large L, is given by

σ2 = ⟨X2⟩ − ⟨X⟩2 ≈
L2m

πm

∫
|⟨β⃗ |ψ⟩|4d β⃗ − ∥ψ∥4. (39)

Here we use the integral is normalized by the area πL2 for
each mode. Unfortunately, this will nominally scale exponen-
tially in m. For example, if |ψ⟩ is a tensor product of coherent
states, the first term will be proportional to (L2/2)m, as each of
the m integrals is just a Gaussian, which, unless L ≤

√
2, will

result in an exponential sampling overhead. We also demon-
strate this numerically in Fig. 4(B) for Fock basis states, in
these cases with worst case σ ∼ L0.5m. Such scaling would result
in sampling complexity T = O(Lm) (since the standard error
scales as 1/

√
T). Nevertheless, the precise scaling will depend

on the details of the system being simulated and, depending on
the choice of L for convergence to a desired accuracy (which
in principle can itself depend on m), more efficient sampling
protocols may still be feasible (e.g., if one is able to scale
L = ℓ1/m).

It is interesting to note that the finite-dimensional (qubit)
analog of this does not suffer such a sampling overhead, since
the classical states—stabilizer states—form a 2-design and thus
sampling fluctuations (standard deviation) are suppressed by the
Hilbert space dimension [7,8,60]. In contrast, it is known that
any set of CV states can at best form a 1-design (indeed, coherent
states form a 1-design, as they resolve the identity) [61,62].

3.4.4. Summary of Measurement Results

We sum up the results of this section in Table 1 for Fock basis
measurements, but direct the reader to the relevant sections
above for a more nuanced picture. Note, the first row does not
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Table 1. Measurement Procedure Cost for m-Mode
Rank-k State

Method Time
Complexity

Notes

Single measurement
probability

mk

Markov chain
sampling

Tmk Thermalization time T

Conditional
probability, exact norm

Nmk2 Number of photons N

Conditional
probability, approx.
ortho.

Nk

Conditional
probability,
Proposition 3

NTmk Number of samples
T = T(L)

correspond to outputting statistics according to the measure-
ment distribution, it is the cost for simply computing a single
probability (the other rows do however correspond to outputting
results according to the measurement distribution).

3.5. Comment on Errors

Since the framework described allows for a certain degree
of imprecision in a decomposition (e.g., Fock states are only
approximately represented, as in Theorem 1, albeit to arbitrary
precision), a natural question is the propagation of errors. If the
initial approximate state |ψ̃⟩ has target fidelity |⟨ψ̃ |ψ⟩|2 = 1 − ϵ
with the ideal state |ψ⟩, under free unitary operations, the over-
lap remains unchanged. For an initial product state |ψ̃⟩⊗n, the
fidelity is (1 − ϵ)n. To achieve a total fidelity 1 − δ, one can
take ϵ = 1 − (1 − δ)1/n ≈ δ/n for small δ (i.e., it only requires
linearly decreasing precision per state). Of course, if one imple-
ments resourceful operations inexactly (as in Corollary 2), errors
can be introduced during the simulation; however, these can be
controlled easily by picking the error parameters appropriately.

In Fig. 5, we show the output measurement probabilities from
a Boson sampling like simulation, for sizes up to 10 photons
in 10 modes, comparing the results from an exact simulation in
the Fock basis (as outlined in Section 2.4) with simulation using
the coherent rank decomposition. We see the results match very
well, for all output states, where the initial fidelity is set to over
99.9% for each single-photon state.

Lastly we discuss the issue of numerical stability. We take
the canonical example of starting in a state with n single pho-
tons |1⟩⊗n (though any other n photon configuration would work
equally well). In the coherent framework, this is represented as a
product of odd cat states, which for small error ϵ can be written
as

|1⟩⊗n ≈
1

(2ϵ)n
2n∑︂
i=1

si |ϵ b⃗i⟩, (40)

where b⃗i is a binary vector of ±1 entries and si =
∏︁

j bi,j ∈

{±1}, where bi,j = (b⃗i)j is the jth component of vector b⃗i.
That is, the coherent states in the superposition are α⃗i = ϵ b⃗i =

(ϵbi,1, . . . , ϵbi,n). It is evident for small enough ϵ and/or large
enough n, the prefactor could be numerically unstable and lead
to inaccurate computations. We can observe however that this
need not be explicitly stored and is used mostly as a “bookkeep-
ing” device. Indeed, consider updating such a state by a linear

Fig. 5. Boson sampling simulation. Starting with initial state
|1⟩⊗n, where n = 6, 8, and 10, we simulate the output from a Haar
random unitary transfer matrix. In the Fock basis, this results in stor-
ing all 462, 6435, and 92378 complex amplitudes, respectively (i.e.,
the dimension of the Hilbert space for the n photons in n modes).
The coherent state decomposition uses Corollary 1 to represent |1⟩
as an odd cat state, with error parameter ϵ = 0.2, which has fidelity
|⟨1|1̃⟩|2>0.999. This results in (n + 1)2n = 448, 2304, and 11264
complex numbers stored in memory, respectively. We compute the
Fock probabilities via Eq. (37), which are enumerated on the x-axis,
sorted by the probability.

optical unitary Û, with transfer matrix û. We can note this can
be performed agnostic of ϵ :

Û |1⟩⊗n ≈
1

(2ϵ)n
2n∑︂
i=1

si |ϵ ûb⃗i⟩ =
1

(2ϵ)n
2n∑︂
i=1

si |ϵ b⃗′

i⟩.

Here, by slight abuse of notation, b⃗′
i = ûb⃗i is the unitarily evolved

vector [e.g., see Eq. (33)], which is no longer a “binary” vector
in general. At this step, only the vectors b⃗′

i (and corresponding
phase factors) need to be stored explicitly. Moreover, we see there
is no issue of compounding errors when additional unitaries are
applied (the vectors b⃗′

i can just be updated, which contain no
reference to ϵ).

When computing a transition amplitude (again with a slight
abuse of notation) ⟨n⃗|Û |1⟩⊗n, we see the ϵ dependence can be
almost dropped entirely:

⟨n⃗|Û |1⟩⊗n ≈
1

(2ϵ)n
2n∑︂
i=1

si⟨n⃗|ϵ b⃗′

i⟩ =
1
2n

2n∑︂
i=1

si

∏︂
j

e−ϵ
2 |b′i,j |

2/2 (b
′
i,j)

nj√︁
nj!

.

In the last step, we used that |n⃗⟩ is an n photon state n =
∑︁

j nj and
so the overlaps with the coherent states cancel out the ϵ n =

∏︁
j ϵ

nj

contribution. In fact, in this instance, one could formally set
ϵ = 0 in the last step to recover the exact result.

In more general scenarios, this kind of “bookkeeping” may
not be desired/feasible, in which case there could, in princi-
ple, be numerical precision issues at large sizes. This of course
depends strongly on the desired accuracy. In Fig. 5, we see
ϵ = 0.2 gives high accuracy (above 99%) to all output probabil-
ities. In Eq. (40), this yields a prefactor of 2.5n, which would
likely pose no numerical problems at the accessible system sizes
(i.e., those that fit in memory). Overall, the value ϵ should be
chosen carefully to avoid numerical issues at large sizes. Fortu-
nately, the fidelity of the approximate state converges quickly as
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O(ϵ 2(n+1)/(n + 1)!) for an n-photon single-mode state, as shown in
Theorem 1. Unless very large sizes and extremely high precision
are required, one can likely avoid any such issues.

4. RESOURCE THEORY OF COHERENT STATE
RANK
The framework introduced in this work can be phrased as a
quantum resource theory [63]. As a brief reminder, a resource
theory is a triple, (F ,O,R), where F is the set of “free states”,
a subset of quantum states ρ ∈ S(H) that are devoid of the
resource of interest [S(H) is the state space, i.e., the set of all
density matrices]; AO is the set of “free operations”, a subset of
quantum channels, E : S(H) → S(H) that do not generate any
resource when applied to states in F ; and R : S(H) → R≥0 is a
functional quantifying the amount of resource in quantum states,
with certain properties such as: (i) faithfulness, i.e., vanishing
on the resource-free states only, R(ρ) = 0 ⇐⇒ ρ ∈ F and (ii)
monotonicity under free operations, i.e., free operations can at
most consume the resource but never increase it, R(E(ρ)) ≤
R(ρ) ∀E ∈ O.

In our formulation, free states are multi-mode coherent states
of the form |α1, . . . ,αm⟩, where |αi⟩ is a coherent state, Eq. (1).
Free operations are those described in Section 3.2, which
map (multi-mode) coherent states to coherent states (up to the
amplitude), such as beam splitters, phase shifts, displacement
operators. Then, akin to the definition of “magic" or “non-
stabilizerness" in stabilizer rank simulations [64–66], a resource
measure for an arbitrary m mode state |ψ⟩ is the logarithm of
the rank of its minimal decomposition into free states. That is,
R(|ψ⟩) = log k, where k is the smallest positive integer such that
|ψ⟩ =

∑︁k
i=1 ci |α

(1)
i , . . . ,α(m)

i ⟩ (logarithm base is unimportant, but
we will use base 2 here). Properties (i) and (ii) are immediately
satisfied by this definition. In addition, it is easy to check this
satisfies subadditivity, R(|ψ⟩ ⊗ |ϕ⟩) ≤ R(|ψ⟩) + R(|ϕ⟩), and in
particular, R(|ψ⟩ ⊗ |ϕ⟩) = R(|ψ⟩) for |ϕ⟩ ∈ F .

We emphasize that our focus in this work is primarily on
resource quantification and not on state conversion. This allows
us to restrict to pure states and free unitaries, while acknowledg-
ing the fact that free unitaries cannot consume any resource, see
Supplement 1F. A similar notion related to our coherent rank
resource framework is the so called “degree of non-classicality,”
which has previously been studied in, e.g., Refs. [55,67].

Moreover, the coherent state rank is closely related to the
notion of coherence rank in the resource theory of coherence
[68]. For example, if the coherent states in the expansion of a
quantum state are nearly orthogonal, then the two are equiva-
lent. However, generically, coherent states are not orthogonal
and therefore a direct connection to resource theory of coher-
ence is slightly more involved. The quantification of coherence
in infinite-dimensional systems is not a new problem. Two
approaches are quite common here. The first assumes Fock
states as the “incoherent basis" and quantifies the coherence of
coherent states with respect to this, e.g., Refs. [69,70]. However,
this has the disadvantage of being at odds with the traditional
notion of non-classicality in quantum optics, where coherent
states are the most classical, while Fock states are admittedly
non-classical [34]. The second approach defines coherent states
as the preferred incoherent basis. This includes the resource the-
ory of superposition [71] and subsequent works [72], including
an operational framework [73]. Our resource theory framework
falls under the so-called passive linear optics framework and the

Fig. 6. Resource monotones for Fock states. We plot the mea-
sures of resource for the Fock states |n⟩, using the coherent state
rank definition, R, and the Wigner negativity resource (with loga-
rithm base 2). We also perform a curve fit (dash line), which shows
the Wigner resource is approximated by W(n) ≈ 0.48R(n). In Sup-
plement 1E, we demonstrate by exact calculation that indeed the
result is only approximate and likely the similar growth is due to
the fact Wn(α) = Wn(|α |) has n roots in |α |.

operational characterizations introduced in the references above
are broadly applicable to our work.

In the present work, we consider the coherent state rank as the
quantity of interest, since this directly determines the classical
simulation complexity. We add one comment here however, that
since the decomposition of an arbitrary state |ψ⟩ to a coherent
state basis is typically not exact for finite k [e.g., see Theorem
1 and Eq. (3)], we will allow the above resource theory to hold
approximately, in the sense of Definition 1.

We can contrast the coherent state rank resource theory to
another related resource theory, namely one using the monotone
of the Wigner logarithmic negativity [74], defined as W(|ψ⟩) =
log

∫
dα⃗ |W|ψ⟩(α⃗)|, where α⃗ = (α1, . . . ,αm) for an m-mode pure

state |ψ⟩. In this framework, Gaussian states (including coherent
states) are free, as the Wigner function is everywhere non-
negative. First note that this implies W(|ψ⟩) = 0 = R(|ψ⟩) for
|ψ⟩ ∈ F . Moreover, in Fig. 6, we plot both resource measures
for Fock states, which shows the two definitions are consistent
(in fact, are related approximately by a constant factor). Here
we use the results of Theorem 1 that shows one can approxi-
mate |n⟩ using n + 1 coherent states. However, it is also clear the
two definitions will not generally align with one another, in the
sense one can find states |ψ⟩, |ϕ⟩ such that W(|ψ⟩)<W(|ϕ⟩),
but R(|ψ⟩)>R(|ϕ⟩), or vice versa (this is easy to show in the
case where we consider exact decompositions, but harder to see
when we allow approximate states, due to the difficulty of prov-
ing the optimality of the approximate rank k of a particular state
decomposition, though we expect the statement to remain true).

Similarly, while the coherent rank decomposition is related to
the stellar rank via Proposition 1, we wish to make it clear these
are also distinct theories. In the context of a resource theory, the
stellar rank r is a genuine resource monotone where Gaussian
states and operations are free (r = 0), and simulation complexity
scales as O(2r) (Section 2.3). By Proposition 1, one can see the
approximate coherent rank resource measure

Rψ ≤ log[(rψ + 1)] + log[kψ],

https://doi.org/10.6084/m9.figshare.24645414
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where kψ is the coherent rank of the Gaussian state in the
stellar decomposition of |ψ⟩, Eq. (30). Two comments are in
order. First, note that the approximate coherent rank Rψ is
upper bounded by two different types of non-classicality. The
stellar rank term, log[(rψ + 1)], represents the non-Gaussian
operational cost in terms of single-photon additions required to
prepare the quantum state [47], where this term is vanishing if
and only if the stellar rank is zero. However, the log[kψ] term
denotes the non-classicality in terms of the Glauber–Sudarshan
P function (see, e.g., Ref. [72]), related to the amount of squeez-
ing, which is vanishing if and only if kψ = 1, when the squeezing
is ζ = 0. Second, as a function of the stellar rank, the Rψ can
grow at most logarithmically. However, the overall scaling of Rψ

may be dominated by the amount of squeezing instead, since kψ
can itself be arbitrarily large for |ζ | → ∞ (see also the discussion
after Proposition 1).

In terms of simulation complexity, the classical requirements
for Fock input state |1⟩⊗n |0⟩⊗(m−n) under linear optics and with
coherent basis measurements scales as O(2n) in both the stellar
and coherent rank frameworks, though the former scales as O(4n)

for Fock basis measurements (and similarly for linear combina-
tions of Gaussians in Section 2.2.1). Indeed, it is easy to find
differences. As another example, the state |n⟩|0⟩m−1 can be sim-
ulated in a time linear in n within the coherent state framework,
whereas this is a state with stellar rank n and simulation complex-
ity therefore scaling as 2n in the stellar rank paradigm (Section
2.3). Another key example is that the cat state |ix⟩ − | − ix⟩ has
coherent rank exactly 2, whereas the stellar rank is infinite [47].
However, Gaussian Boson sampling is typically much more effi-
cient in the stellar framework (though as discussed below, for
small enough squeezing or low enough target fidelity, the two
can be equivalent, but when the squeezing is large, the stellar
formalism will be most efficient).

Nevertheless, in all three cases, Wigner logarithmic nega-
tivity, coherent state rank, and the stellar rank, the resource
measure, W, R and r relate to the simulation cost. For coherent
state rank and stellar rank, the cost is exponential, scaling as
2R,r, for free operations. For the Wigner negativity, as discussed
in Supplement 1A, the simulation complexity scales as 4W ,
although this has additional difficulties/errors as it is a sampling
approach.

5. DISCUSSION
We have developed a paradigm for the simulation of quantum
optics, by decomposition to coherent states, in a manner akin to
stabilizer state decompositions in finite-dimensional systems. In
this framework, linear optical operations are free, as are com-
puting amplitudes in the Fock or coherent state bases. For Boson
sampling type simulations, this can lead to exponential improve-
ments over naive Fock space simulation, with a simulation cost
comparable to methods relying upon the permanent.

In Table 2 we summarize some of the complexity results for a
few examples using the finite coherent state rank decomposition
discussed in this work. Starting with an initial state of n pho-
tons, we document the cost for storing this in memory (space),
and the update time for a m-mode LO operation (e.g., random
Boson sampling circuit). Here, the measurement column is the
time cost to compute the probability of a particular measure-
ment outcome, in the Fock or coherent state basis. All results in
the table should be interpreted in the “big O” style, where, e.g.,
lower-order terms and constant factors related to implementation

Table 2. Complexity Overview for n Photon Simula-
tions

Initial State Space LO
Time

Measurement Notes

|α = 1⟩⊗n |0⟩⊗(m−n) m m2 m Coherent state
|α⟩

|1⟩⊗n |0⟩⊗(m−n) m2n m22n m2n Boson
sampling

|n⟩ |0⟩⊗(m−1) mn m2n mn Single-mode
Fock state

|ζ = 0.882⟩⊗n |0⟩⊗(m−n) m8n m28n m8n Squeezed state
|ζ ⟩ to 99%

fidelity (GBS)∑︁k
i=1 ci |α

(1)
i , . . . ,α(m)

i ⟩ mk m2k mk General rank k
state

details are hidden. In the fourth row down, |0.882⟩ refers to a
squeezed vacuum state (e.g., Gaussian Boson sampling [GBS])
with squeezing parameter ζ = 0.882, corresponding to mean
photon number ⟨n̂⟩ ≈ 1. We find such a state can be approxi-
mated to fidelity above 0.99 using eight coherent states, which
is used here (for lower/higher target fidelity, fewer/more states
are needed in general). Also note, for larger (smaller) squeez-
ing, typically more (fewer) coherent states will be required in
the decomposition.

In all cases in Table 2, the simulation requirements here can
be much less than the equivalent full Fock space simulation
(Section 2.4), which scales as the full Fock dimension in the
worst case (such as in Boson sampling). Notably, the simulation
cost here is only quadratic in the number of modes, even if all
modes of an n-photon system are populated. This allows us to
represent such systems significantly more efficiently, based on
the decomposition used.

The method introduced is trivially parallelizable, since differ-
ent compute nodes can store a subset of the terms in a coherent
state decomposition and update them independently under linear
optical operations. Moreover, this method potentially allows one
to construct a trade-off between simulation complexity and accu-
racy, e.g., by reducing the number of terms in a coherent state
decomposition, at the expense of fidelity. In the above table for
example, we use eight coherent states to approximate a particular
squeezed state to fidelity 0.99, however, fewer terms are required
in general for a lower target fidelity; for this case, ζ = 0.882,
only two coherent states are required to achieve fidelity above
0.9, yielding a cost to simulate GBS scaling as 2n. This allows a
heuristic approach to simulating Boson sampling up to a target
fidelity.

In addition, this construction allows for a tensor-network-like
approach, potentially resulting in memory (and time) saving,
in circuits with structure [9,11]. For example, in systems that
have only a few entangling operations across a particular par-
tition, we can split the state as a sum of tensor product states
across this partition. Starting with a product state, one can always
write |ψ⟩ = |ψL⟩ ⊗ |ψR⟩. Let us assume for simplicity equal par-
titions, so each partition size (number of modes) is half of the
full one (i.e., dimension

√
d instead of d). Instead of storing

one state over the entire Hilbert space O(d), we use the struc-
ture to store two states, but each only over their respective half
partition, O(

√
d). In the coherent rank picture for say Boson

sampling with n photons, the cost to store this in memory is
only O(2n/2), instead of O(2n) for a state over the full Hilbert
space. Then, any operation acting only on the left or right half

https://doi.org/10.6084/m9.figshare.24645414
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can be applied trivially. For entangling operations (e.g., two-
mode operations acting across the partition), if they can be
decomposed as Û =

∑︁k
i=1 ciûi ⊗ v̂i, where ûi, v̂i are free (e.g.,

displacements) acting on each partition, then the state becomes
a superposition of size k, but preserving the partition structure in
each term. In the coherent rank decomposition picture, writing
|ψL⟩ =

∑︁kL
m=1 am |α⃗m⟩, |ψR⟩ =

∑︁kR
n=1 bn | β⃗n⟩, we initially just store

kL + kR states in memory [here, |α⃗m⟩ (| β⃗n⟩) is only defined over
the modes in the left (right) partition]. Upon application of Û
across the partition, we get

Û |ψ⟩ =

k∑︂
i=1

ci

(︄
kL∑︂

m=1

am,i |α⃗m,i⟩

)︄
⊗

(︄
kR∑︂

n=1

bn,i | β⃗n,i⟩

)︄
=:

k∑︂
i=1

ci |ψL,i⟩ ⊗ |ψR,i⟩,

ûi |α⃗m⟩ =
am,i

am
|α⃗m,i⟩, v̂i | β⃗n⟩ =

bn,i

bn
| β⃗n,i⟩,

(41)
and the cost to store this in memory is O(k(kL + kR)) from storing
each |α⃗m,i⟩, | β⃗n,i⟩ (and amplitudes), which could be significantly
less than O(kLkR) for storing the complete state. Of course, find-
ing a decomposition for Û could be non-trivial itself, or result
in a huge number of terms (k). Further note that the cost will
be exponential in the number of such operations, e.g., after T of
them with space complexity scaling as O(kT(kL + kR)). In general
therefore, this is only useful if there are few of such entangling
operations across the partition. Finally we comment that the
ûi, v̂i do not, strictly speaking, have to be free operations, but
could also increase the rank in the state of the respective par-
titions. For example, a beam splitter [Eq. (34)] with a small
transmission to the other mode (small θ) can be expanded to
first order B̂(θ, ϕ) ≈ 1 + θ

2 (â
†b̂eiφ − âb̂†e−iφ). Note this has the

desired structure, but the creation operators are not free, and
instead double the coherent rank, by Corollary 2 (the annihila-
tion operators are free). The effect this has would be to increase
the kL, kR for each term in Eq. (41). For this example, the resulting
number of states to keep in memory for each of the three terms
would be kL + kR, 2kL + kR, kL + 2kR, or 4(kL + kR) in total. If we
kept up to order p in the expansion (i.e., up to terms of the form
â†pb̂p, etc.), the total number of states to store in memory would
be 2p(p + 1)(kL + kR), by application of Theorem 3. Whether or
not this is useful of course depends strongly on the circuit at
hand. We can see that if there are only a few beam splitters
applied across the partition of choice and p (θ) is sufficiently
small, a memory saving can be achieved.
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